zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence of solutions of nonhomogeneous linear difference systems with delays. (English) Zbl 1204.39003
Authors’ abstract: Sufficient conditions are given for the asymptotic constancy of the solutions of a system of linear difference equations with delays. Moreover, it is shown that the limits of the solutions, as t, can be computed in terms of the initial function and a special matrix solution of the corresponding adjoint equation.
39A06Linear equations (difference equations)
39A22Growth, boundedness, comparison of solutions (difference equations)
[1]Agarwal, R., Bohner, M., Grace, S., O’Regan, D.: Discrete Oscillation Theory. Hindawi Publishing Corporation (2005)
[2]Arino, O., Pituk, M.: More on linear differential systems with small delays. J. Differ. Equ. 170, 381–407 (2001) · Zbl 0989.34053 · doi:10.1006/jdeq.2000.3824
[3]Atkinson, F.V., Haddock, J.B.: Criteria for asymptotic constancy of solutions of functional differential equations. J. Math. Anal. Appl. 91, 410–423 (1983) · Zbl 0529.34065 · doi:10.1016/0022-247X(83)90161-0
[4]Bellman, R., Cooke, K.: Differential Difference Equations. Academic Press, Boston (1993)
[5]Bereketoglu, H., Karakoc, F.: Asymptotic constancy for impulsive delay differential equations. Dyn. Syst. Appl. 17, 71–84 (2008)
[6]Bereketoglu, H., Pituk, M.: Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays. Discrete Contin. Dyn. Syst. (Supplement Volume) 100–107 (2003)
[7]Diblik, J.: Asymptotic representation of solutions of equation y ’(t)=β(t)[y(t)(t(t))]. J. Math. Anal. Appl. 217, 210–215 (1998) · Zbl 0892.34067 · doi:10.1006/jmaa.1997.5709
[8]Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Wather, H.-O.: Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Springer, New York (1995)
[9]Driver, R.D.: Ordinary and Delay Differential Equations. Springer, New York (1977)
[10]Elaydi, S.: An Introduction to Difference Equations. Springer, New York (1996)
[11]El’sgol’ts, L.E.: Introduction to the Theory of Differential Equations with Deviating Argument. Holden Day, San Francisco (1966)
[12]El’sgol’ts, L.E., Norkin, S.B.: Introduction to the Theory and Application of Differential Equations with Deviating Argument. Academic Press, New York (1973)
[13]Gopalsamy, K.: Stability and Oscillation in Delay Differential Equations of Population Dynamics. Kluwer Academic, Dordrecht (1992)
[14]Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations. Clarendon, Oxford (1991)
[15]Hale, J.: Theory of Functional Differential Equations. Springer, New York (1977)
[16]Jaros, J., Stavroulakis, I.P.: Necessary and sufficient conditions for oscillations of difference equations with several delays. Util. Math. 45, 187–195 (1994)
[17]Karakoc, F., Bereketoglu, H.: Some results for linear impulsive delay differential equations. Dyn. Contin. Discrete Impuls. Syst. (to appear)
[18]Kelley, W.G., Peterson, A.C.: Difference Equations: An Introduction with Applications. Academic Press, New York (1991)
[19]Kolmanovski, V.B., Nosov, V.R.: Stability of Functional Differential Equations. Academic Press, New York (1986)
[20]Koplatadze, R., Kvinikadze, G., Stavroulakis, I.P.: Oscillation of second-order linear difference equations with deviating arguments. Adv. Math. Sci. Appl. 12, 217–226 (2002)
[21]Krisztin, T.: A note on the convergence of the solutions of a linear functional differential equation. J. Math. Anal. Appl. 145, 17–25 (1990) · Zbl 0693.45012 · doi:10.1016/0022-247X(90)90427-H
[22]Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston (1993)
[23]Lakshmikhantham, V., Trigiante, D.: Theory of Difference Equations: Numerical Methods and Applications. Academic Press, New York (1988)
[24]MacDonald, N.: Biological Delay Systems: Linear Stability Theory. Cambridge University Press, Cambridge (1989)
[25]Murakami, K.: Asymptotic constancy for systems of delay differential equations. Nonlinear Anal. 30, 4595–4606 (1997) · Zbl 0959.34058 · doi:10.1016/S0362-546X(97)00316-7
[26]Myshkis, A.D.: Linear Differential Equations with Retarded Argument. Nauka, Moscow (1972) (in Russian)
[27]Shen, J., Stavroulakis, I.P.: Oscillation criteria for delay difference equations. Electron. J. Differ. Equ. 2001(10), 1–15 (2001)
[28]Stavroulakis, I.P.: Oscillations of delay difference equations. Comput. Math. Appl. 29, 83–88 (1995) · Zbl 0832.39002 · doi:10.1016/0898-1221(95)00020-Y