zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy Lipschitz maps and fixed point theorems in fuzzy metric spaces. (English) Zbl 1204.54008
In this paper, the notions of fuzzy Lipschitz map and fuzzy Lipschitz distance are introduced between two fuzzy metric spaces. The notion of minimal slope of a map is introduced, which is defined by the ratio of two fuzzy metrics, and some properties on it and relations with the dilation are derived.
MSC:
54A40Fuzzy topology
03E72Fuzzy set theory
54E35Metric spaces, metrizability
References:
[1]Deng, Z. -K.: Fuzzy pseudometric spaces, J. math. Anal. appl. 86, 74-95 (1982) · Zbl 0501.54003 · doi:10.1016/0022-247X(82)90255-4
[2]Erceg, M. A.: Metric spaces in fuzzy set theory, J. math. Anal. appl. 69, 205-230 (1979) · Zbl 0409.54007 · doi:10.1016/0022-247X(79)90189-6
[3]Fang, J. X.: On fixed point theorems in fuzzy metric spaces, Fuzzy sets and systems 46, 107-113 (1992) · Zbl 0766.54045 · doi:10.1016/0165-0114(92)90271-5
[4]George, A.; Veeramani, P.: On some results in fuzzy metric spaces, Fuzzy sets and systems 64, 395-399 (1994) · Zbl 0843.54014 · doi:10.1016/0165-0114(94)90162-7
[5]George, A.; Veeramani, P.: On some results of analysis for fuzzy metric spaces, Fuzzy sets and systems 90, 365-368 (1997) · Zbl 0917.54010 · doi:10.1016/S0165-0114(96)00207-2
[6]Grabiec, M.: Fixed points in fuzzy metric spaces, Fuzzy sets and systems 27, 385-389 (1988) · Zbl 0664.54032 · doi:10.1016/0165-0114(88)90064-4
[7]Gregori, V.; Romaguera, S.: Some properties of fuzzy metric spaces, Fuzzy sets and systems 115, 485-489 (2000) · Zbl 0985.54007 · doi:10.1016/S0165-0114(98)00281-4
[8]Gregori, V.; Romaguera, S.: On completion of fuzzy metric spaces, Fuzzy sets and systems 130, 399-404 (2002) · Zbl 1010.54002 · doi:10.1016/S0165-0114(02)00115-X
[9]Gregori, V.; Sapena, A.: On fixed-point theorems in fuzzy metric spaces, Fuzzy sets and systems 125, 245-252 (2002) · Zbl 0995.54046 · doi:10.1016/S0165-0114(00)00088-9
[10]Kaleva, O.; Seikkala, S.: On fuzzy metric spaces, Fuzzy sets and systems 12, 215-229 (1984) · Zbl 0558.54003 · doi:10.1016/0165-0114(84)90069-1
[11]E.P. Klement, R. Mesiar, E. Pap, Triangular norms, Position paper I: basic analytical and algebraic properties, Fuzzy Sets and Systems 143 (2004) 5 – 26. · Zbl 1038.03027 · doi:10.1016/j.fss.2003.06.007
[12]E.P. Klement, R. Mesiar, E. Pap, Triangular norms, Position paper II: general construction and parametrized families, Fuzzy Sets and Systems 145 (2004) 411 – 438. · Zbl 1059.03012 · doi:10.1016/S0165-0114(03)00327-0
[13]E.P. Klement, R. Mesiar, E. Pap, Triangular norms, Position paper III: continuous t-norms, Fuzzy Sets and Systems 145 (2004) 439 – 545. · Zbl 1059.03013 · doi:10.1016/S0165-0114(03)00304-X
[14]Klement, E. P.; Mesiar, R.; Pap, E.: Triangular norms, (2000)
[15]Kramosil, I.; Michalek, J.: Fuzzy metrics and statistical metric spaces, Kybernetika 11, 336-344 (1975) · Zbl 0319.54002
[16]Menger, K.: Statistical metrics, Proc. nat. Acad. sci. 28, 535-537 (1942) · Zbl 0063.03886 · doi:10.1073/pnas.28.12.535
[17]Mihet, D.: On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy sets and systems 158, 915-921 (2007) · Zbl 1117.54008 · doi:10.1016/j.fss.2006.11.012
[18]Pap, E.; Hadžić, O.; Mesiar, R.: A fixed point theorem in probabilistic metric spaces and an application, J. math. Anal. appl. 202, 433-449 (1996) · Zbl 0855.54043 · doi:10.1006/jmaa.1996.0325
[19]Schweizer, B.; Sklar, A.: Statistical metric spaces, Pacific J. Math. 10, 314-334 (1960) · Zbl 0091.29801
[20]Tardiff, R. M.: Contraction maps on probabilistic metric spaces, J. math. Anal. appl. 165, 517-523 (1992) · Zbl 0773.54033 · doi:10.1016/0022-247X(92)90055-I
[21]G. Yun, S. Hwang, J. Chang, Fuzzy isometries and non-existence of fuzzy contractive maps on fuzzy metric spaces, preprint.
[22]Zadeh, L. A.: Fuzzy sets, Inform. and control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[23]Žikić, T.: On fixed point theorems of gregori and sapena, Fuzzy sets and systems 144, 421-429 (2004) · Zbl 1052.54006 · doi:10.1016/S0165-0114(03)00179-9