zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A comparison of the Newton-Krylov method with high order Newton-like methods to solve nonlinear systems. (English) Zbl 1204.65055
Summary: We compare the CPU time and error estimates of some variants of Newton method of the third and fourth-order convergence with those of the Newton-Krylov method used to solve systems of nonlinear equations. By expanding some numerical experiments we show that the use of Newton-Krylov method is better in the cost and accuracy points of view than the use of other high order Newton-like methods when the system is sparse and its size is large.

65H10Systems of nonlinear equations (numerical methods)
[1]Dembo, R. S.; Eisenstat, S. C.; Steihaug, T.: Inexact Newton methods, SIAM J. Numer. anal. 19, 400-408 (1982) · Zbl 0478.65030 · doi:10.1137/0719025
[2]Frontini, M.; Sormani, E.: Third-order methods from quadrature formulae for solving systems of nonlinear equations, Appl. math. Comput. 149, 771-782 (2004) · Zbl 1050.65055 · doi:10.1016/S0096-3003(03)00178-4
[3]Cordero, A.; Torregrosa, J. R.: Variants of Newton’s method for functions of several variables, Appl. math. Comput. 183, 199-208 (2006) · Zbl 1123.65042 · doi:10.1016/j.amc.2006.05.062
[4]Darvishi, M. T.; Barati, A.: A third-order Newton-type method to solve systems of nonlinear equations, Appl. math. Comput. 187, 630-635 (2007) · Zbl 1116.65060 · doi:10.1016/j.amc.2006.08.080
[5]Darvishi, M. T.; Barati, A.: A fourth-order method from quadrature formulae to solve systems of nonlinear equations, Appl. math. Comput. 188, 257-261 (2007) · Zbl 1118.65045 · doi:10.1016/j.amc.2006.09.115
[6]Darvishi, M. T.; Barati, A.: Super cubic iterative methods to solve systems of nonlinear equations, Appl. math. Comput. 188, 1678-1685 (2007) · Zbl 1119.65045 · doi:10.1016/j.amc.2006.11.022
[7]Babajee, D. K. R.; Dauhoo, M. Z.; Darvishi, M. T.; Barati, A.: A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule, Appl. math. Comput. 200, 452-458 (2008) · Zbl 1160.65018 · doi:10.1016/j.amc.2007.11.009
[8]Hestenes, M. R.; Stiefel, E.: Methods of conjugate gradients for solving linear systems, J. res. Nat. bur. Stand. 49, 409-435 (1952) · Zbl 0048.09901
[9]Saad, Y.; Schultz, M. H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. statist. Comput. 7, 856-869 (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[10]Van Der Vorst, H. A.: Bi-CGSTAB: a fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. statist. Comput. 13, 631-644 (1992) · Zbl 0761.65023 · doi:10.1137/0913035
[11]Freund, R. W.: A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. comput. 14, 470-482 (1993) · Zbl 0781.65022 · doi:10.1137/0914029
[12]Eisenstat, S. C.; Walker, H. F.: Globally convergent inexact Newton methods, SIAM J. Optim. 4, 393-422 (1994) · Zbl 0814.65049 · doi:10.1137/0804022
[13]Bai, Z. -Z.; Golub, G. H.; Lu, L. -Z.; Yin, J. -F.: Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. comput. 26, No. 3, 844-863 (2005) · Zbl 1079.65028 · doi:10.1137/S1064827503428114
[14]Bai, Z. -Z.; Golub, G. H.; Ng, M. K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix anal. Appl. 24, 603-626 (2003) · Zbl 1036.65032 · doi:10.1137/S0895479801395458
[15]Bai, Z. -Z.; Sun, J. -C.; Wang, D. -R.: A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations, Comput. math. Appl. 32, No. 12, 51-76 (1996) · Zbl 0870.65025 · doi:10.1016/S0898-1221(96)00207-6
[16]Saad, Y.: Iterative methods for sparse linear systems, (1996) · Zbl 1031.65047
[17]An, H. -B.; Bai, Z. -Z.: A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations, Appl. numer. Math. 57, 235-252 (2007) · Zbl 1123.65040 · doi:10.1016/j.apnum.2006.02.007
[18]Jr., J. E. Dennis; Schnabel, R. B.: Numerical methods for unconstrained optimization and nonlinear equations, Series in automatic computation (1983) · Zbl 0579.65058
[19]Eisenstat, S. C.; Walker, H. F.: Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. comput. 17, 16-32 (1996) · Zbl 0845.65021 · doi:10.1137/0917003
[20]Shadid, J. N.; Tuminaro, R. S.; Walker, H. F.: An inexact Newton method for fully coupled solution of the Navier – Stokes equations with heat and mass transport, J. comput. Phys. 137, 155-185 (1997) · Zbl 0898.76066 · doi:10.1006/jcph.1997.5798
[21]Tuminaro, R. S.; Walker, H. F.; Shadid, J. N.: On backtracking failure in Newton-GMRES methods with a demonstration for the Navier – Stokes equations, J. comput. Phys. 180, 549-558 (2002) · Zbl 1143.76489 · doi:10.1006/jcph.2002.7102
[22]Pawlowski, R. P.; Shadid, J. N.; Simonis, J. P.; Walker, H. F.: Globalization techniques for Newton – Krylov methods and applications to the fully coupled solution of the Navier – Stokes equations, SIAM rev. 48, No. 4, 700-721 (2006) · Zbl 1110.65039 · doi:10.1137/S0036144504443511
[23]Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. stat. Comput. 10, 36-52 (1989) · Zbl 0666.65029 · doi:10.1137/0910004
[24]Walker, H. F.; Zhou, L.: A simpler GMRES, Numer. linear algebra appl. 1, No. 6, 571-581 (1994) · Zbl 0838.65030 · doi:10.1002/nla.1680010605
[25]Babajee, D. K. R.; Dauhoo, M. Z.; Darvishi, M. T.; Karami, A.; Barati, A.: Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations, J. comput. Appl. math. 233, 2002-2012 (2010) · Zbl 1204.65050 · doi:10.1016/j.cam.2009.09.035
[26]Nedzhibov, G. H.: A family of multi-point iterative methods for solving systems of nonlinear equations, J. comput. Appl. math. 222, No. 2, 244-250 (2008) · Zbl 1154.65037 · doi:10.1016/j.cam.2007.10.054
[27]Kelley, C. T.: Solution of the Chandrasekhar H-equation by Newton’s method, J. math. Phys. 21, 1625-1628 (1980) · Zbl 0439.45020 · doi:10.1063/1.524647