zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Gbest-guided artificial bee colony algorithm for numerical function optimization. (English) Zbl 1204.65074
Summary: The artificial bee colony (ABC) algorithm invented recently by D. Karaboga [Erciyes University, Kayseri, Turkey, Technical Report-TR06 (2005)] is a biological-inspired optimization algorithm, which has been shown to be competitive with some conventional biological-inspired algorithms, such as genetic algorithm (GA), differential evolution (DE) and particle swarm optimization (PSO). However, there is still an insufficiency in the ABC algorithm regarding its solution search equation, which is good at exploration but poor at exploitation. Inspired by PSO, we propose an improved ABC algorithm called gbest-guided ABC (GABC) algorithm by incorporating the information of the global best (gbest) solution into the solution search equation to improve the exploitation. Experimental results obtained on a set of numerical benchmark functions show that GABC algorithm can outperform the ABC algorithm in most of them.
MSC:
65K05Mathematical programming (numerical methods)
References:
[1]Holland, J.: Adaptation in natural and artificial systems, (1992)
[2]Tang, K. S.; Man, K. F.; Kwong, S.; He, Q.: Genetic algorithms and their applications, IEEE signal processing magazine 13, 22-37 (1996)
[3]J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942 – 1948.
[4]Eberhart, R.; Shi, Y.; Kennedy, J.: Swarm intelligence, (2001)
[5]Dorigo, M.; Stutzle, T.: Ant colony optimization, (2004)
[6]Simon, D.: Biogeography-based optimization, IEEE transactions on evolutionary computation 12, 702-713 (2008)
[7]D. Karaboga, An idea based on honey bee swarm for numerical optimization, Erciyes University, Kayseri, Turkey, Technical Report-TR06, 2005.
[8]B. Basturk, D. Karaboga, An artificial bee colony (ABC) algorithm for numeric function optimization, in: IEEE Swarm Intelligence Symposium, 2006.
[9]Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of global optimization 39, 171-459 (2007) · Zbl 1149.90186 · doi:10.1007/s10898-007-9149-x
[10]Karaboga, D.; Basturk, B.: On the performance of artificial bee colony (ABC) algorithm, Applied soft computing 8, 687-697 (2008)
[11]Karaboga, D.; Akay, B.: A comparative study of artificial bee colony algorithm, Applied mathematics and computation 214, 108-132 (2009) · Zbl 1169.65053 · doi:10.1016/j.amc.2009.03.090
[12]Price, K. V.; Storn, R. M.; Lampinen, J. A.: Differential evolution: A practical approach to global optimization, (2005)
[13]Singh, A.: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem, Applied soft computing 9, 625-631 (2009)
[14]Karaboga, N.: A new design method based on artificial bee colony algorithm for digital IIR filters, Journal of the franklin institute 346, 328-348 (2009) · Zbl 1166.93351 · doi:10.1016/j.jfranklin.2008.11.003
[15]Ponton, J. W.; Klemes, J.: Alternatives to neural networks for inferential measurement, Computers and chemical engineering 17, 42-47 (1993)
[16]Rao, R. S.; Narasimham, S.; Ramalingaraju, M.: Optimization of distribution network configuration for loss reduction using artificial bee colony algorithm, International journal of electrical power and energy systems engineering (IJEPESE) 1, 116-122 (2008)
[17]Karaboga, D.; Akay, B.; Ozturk, C.: Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks, LNCS: modeling decisions for artificial intelligence 4617, 318-329 (2007)
[18]P. Pawar, R. Rao, J. Davim, Optimization of process parameters of milling process using particle swarm optimization and artificial bee colony algorithm, in: International Conference on Advances in Mechanical Engineering, 2008.
[19]Karaboga, D.; Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems, LNCS: advances in soft computing-foundations of fuzzy logic and soft computing 4529, 789-798 (2007)
[20]Q.-K. Pan, M.F. Tasgetiren, P.N. Suganthan, T.J. Chua, A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem, Information Sciences, in press.
[21]Omran, M. G. H.; Mahdavi, M.: Global-best harmony search, Applied mathematics and computation 198, 643-656 (2008) · Zbl 1146.90091 · doi:10.1016/j.amc.2007.09.004
[22]Trelea, I. C.: The particle swarm optimization algorithm: convergence analysis and parameter selection, Information processing letters 85, 317-325 (2003) · Zbl 1156.90463 · doi:10.1016/S0020-0190(02)00447-7