zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability of the synchronization manifold in nearest neighbor nonidentical van der Pol-like oscillators. (English) Zbl 1204.70016
Summary: We investigate the stability of the synchronization manifold in a ring and in an open-ended chain of nearest neighbor coupled self-sustained systems, each self-sustained system consisting of multi-limit cycle van der Pol oscillators. Such a model represents, for instance, coherent oscillations in biological systems through the case of an enzymatic-substrate reaction with ferroelectric behavior in a brain waves model. The ring and open-ended chain of identical and nonidentical oscillators are considered separately. By using the Master Stability Function approach (for the identical case) and the complex Kuramoto order parameter (for the nonidentical case), we derive the stability boundaries of the synchronized manifold. We have found that synchronization occurs in a system of many coupled modified van der Pol oscillators, and it is stable even in the presence of a spread of parameters.
MSC:
70K20Stability of nonlinear oscillations (general mechanics)
34C05Location of integral curves, singular points, limit cycles (ODE)
References:
[1]Pikovsky, A., Rosemblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Systems. Cambridge University Press, Cambridge (2001)
[2]Boccaletti, S., Kurths, J., Valladares, D.L., Osipov, G., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366(1), 1–101 (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[3]Manrubia, S.C., Mikhailov, A.S., Zanette, A.H.: Emergence of Dynamical Order. World Scientific, Singapore (2004)
[4]Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998) · doi:10.1103/PhysRevLett.80.2109
[5]Barahona, M., Pecora, L.M.: Synchronization in small-world systems. Phys. Rev. Lett. 89, 054101 (2002) · doi:10.1103/PhysRevLett.89.054101
[6]Hu, G., Yang, J., Liu, W.: Instability and controllability of linearly coupled oscillators: eigenvalue analysis. Phys. Rev. E 58, 4440–4453 (1998) · doi:10.1103/PhysRevE.58.4440
[7]Zhan, M., Hu, G., Yang, J.: Synchronization of chaos in coupled systems. Phys. Rev. E 62, 2963–2966 (2000) · doi:10.1103/PhysRevE.62.2963
[8]Chen, Y., Rangarajan, G., Ding, M.: General stability analysis of synchronized dynamics in coupled systems. Phys. Rev. E 67, 026209 (2003)
[9]Kaiser, F.: Coherent oscillations in biological systems: Interaction with extremely low frequency fields. Radio Sci. 17(5S), 17S–22S (1982) · doi:10.1029/RS017i05Sp0017S
[10]Decroley, O., Goldbeter, A.: Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. Proc. Natl. Acad. Sci. U.S.A. 79, 6917–6921 (1982) · Zbl 0491.92010 · doi:10.1073/pnas.79.22.6917
[11]Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms. The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge (1996)
[12]Winfree, A.T.: The Geometry of Biological Time. Springer, New York (2001)
[13]Murray, J.D.: Mathematical Biology. Springer, Berlin (1993)
[14]Goldbeter, A.: Computational approaches to cellular rhythms. Nature 420, 238–245 (2002) · doi:10.1038/nature01259
[15]Kaiser, F., Eichwald, C.: Bifurcation Structure of a Driven multiple-limit-cycle Van der Pol oscillator (I): the superharmonic resonance structure. Int. J. Bifurc. Chaos 1, 485–491 (1991) · Zbl 0878.34029 · doi:10.1142/S0218127491000385
[16]Eichwald, C., Kaiser, F.: Bifurcation structure of a driven multiple-limit-cycle Van der Pol oscillator (II): symmetry-breaking crisis and intermittency. Int. J. Bifurc. Chaos 1, 711–715 (1991) · Zbl 0878.34030 · doi:10.1142/S021812749100052X
[17]Choi, J.D., Hwang, C.J.: An interaction interface for multiple agents on shared 3D display. In: Luo, Y. (ed.) CDVE. LNCS, vol. 3675, pp. 71–78. Springer, Berlin (2005)
[18]Wiesenfeld, K., Colet, P., Strogatz, S.H.: Synchronization transitions in a disordered Josephson series array. Phys. Rev. Lett. 76, 404–407 (1996) · doi:10.1103/PhysRevLett.76.404
[19]Wiesenfeld, K., Colet, P., Strogatz, S.H.: Frequency locking in Josephson arrays: connection with the Kuramoto model. Phys. Rev. E 57, 1563–1569 (1998) · doi:10.1103/PhysRevE.57.1563
[20]Barbara, P., Cawthorne, A.B., Shitov, S.V., Lobb, C.J.: Stimulated emission and amplification in Josephson junction arrays. Phys. Rev. Lett. 82, 1963–1966 (1999) · doi:10.1103/PhysRevLett.82.1963
[21]Schenato, L., Songhwai, O.H., Sastry, S., Bose, P.: Swarm coordination for pursuit evasion games using sensor networks, robotics and automation, ICRA. In: Proceedings of the 2005 IEEE International Conference, vol. 18, no. 22, p. 2493 (2005)
[22]Richard Ivry, B., Richardson, C.T.: Temporal control and coordination: the multiple timer model. Brain Cogn. 48, 117 (2002) · doi:10.1006/brcg.2001.1308
[23]Michael Rich, W.: Heart failure in the 21st century: a cardiogeriatric syndrome. J. Gerontol., Med. Sci. A 56(2), M88–M96 (2001)
[24]Enjieu Kadji, H.G., Chabi Orou, J.B., Yamapi, R., Woafo, P.: Nonlinear dynamics and strange attractor in the biological system. Chaos Solitons Fractals 32, 862–882 (2007) · Zbl 1138.37050 · doi:10.1016/j.chaos.2005.11.063
[25]Enjieu Kadji, H.G., Yamapi, R., Chabi Orou, J.B.: Synchronization of two coupled self-excited systems with multi-limit cycles. Chaos 17, 033113 (2007)
[26]Yamapi, R., Nana Nbendjo, B.R., Enjieu Kadji, H.G.: Dynamics and active control of motion of a driven multi-limit-cycle van der Pol oscillator. Int. J. Bifurc. Chaos 17(4), 1343–1354 (2007) · Zbl 1142.34022 · doi:10.1142/S0218127407017847
[27]Nana, B., Woafo, P.: Synchronization in a ring of four mutually coupled van der Pol oscillators: theory and experiment. Phys. Rev. E 74, 046213 (2006) · doi:10.1103/PhysRevE.74.046213
[28]Kuznetov, A.P., Roman, J.P.: Properties of synchronization in the systems of non-identical coupled van der Pol and van der Pol-Duffing oscillators. Broadband synchronization. Physica D 238, 1499–1509 (2009) · Zbl 1178.34057 · doi:10.1016/j.physd.2009.04.016
[29]Barròn, M.A., Sehn, M.: Synchronization of four coupled van der Pol oscillators. Nonlinear Dyn. 56, 357–367 (2009) · Zbl 1204.34046 · doi:10.1007/s11071-008-9402-y
[30]Kamoun, P., Lavoine, A.H., Verneuil de, H.: Biochimie et Biologie Moleculaire. Flammarion, Paris (2003)
[31]Fukui, K., Nogi, S.: Power combining ladder network with many active devices. IEEE Trans. Microwave Theor. Tech. 28, 1059–1067 (1980) · doi:10.1109/TMTT.1980.1130225
[32]Fukui, K., Nogi, S.: Mode analytical study of cylindrical cavity power combiners. IEEE Trans. Microwave Theor. Tech. 34, 943–951 (1986) · doi:10.1109/TMTT.1986.1133475
[33]Appelbe, B.: Existence of multiple cycles in a van der Pol system with hysteresis in the inductance. J. Phys., Conf. Ser. 55, 1–11 (2006) · doi:10.1088/1742-6596/55/1/001
[34]Boccaletti, S., Latorab, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006) · doi:10.1016/j.physrep.2005.10.009
[35]Pecora, L.M.: Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems. Phys. Rev. E 58(1), 347–360 (1998) · doi:10.1103/PhysRevE.58.347
[36]Tsaneva-Atanasova, K., Yule, D.I., Sneyd, J.: Calcium oscillations in a triplet of pancreatic acinar cells. Biophys. J 88, 1535–1551 (2005) · doi:10.1529/biophysj.104.047357
[37]Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001) · doi:10.1038/35065725
[38]Kaiser, F.: Coherent modes in biological systems. In: Illinger K.H. (ed.) Biological Effects of Nonionizing Radiation. A.C.S Symp. Series, vol. 157 (1981)
[39]Fröhlich, H.: Long-range coherence and energy storage in biological systems. Int. J. Quant. Chem. 2(5), 641–649 (1968) · doi:10.1002/qua.560020505
[40]Fröhlich, H.: Quantum mechanical concepts in biology, in theoretical physics and biology, Marois (ed.), vol. 13 (1969)
[41]Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin (1984)
[42]Acebrón, J.A., Bonilla, I.L., Perez Vicente, C.J., Ritrot, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005) · doi:10.1103/RevModPhys.77.137
[43]Arenasa, A., Daz-Guilera, A., Kurthsd, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008) · doi:10.1016/j.physrep.2008.09.002
[44]Peles, S., Wiesenfeld, K.: Synchronization law for a van der Pol array. Phys. Rev. E 68, 026220.1–026220.8 (2003) · doi:10.1103/PhysRevE.68.026220
[45]Brusselbach, H., Cris Jones, D., Mangir, M.S., Minden, M., Rogers, J.L.: Self-organized coherence in fiber laser arrays. Opt. Lett. 30, 1339–1341 (2005) · doi:10.1364/OL.30.001339
[46]Strogatz, S.H., Abrams, D.M., Mcrobie, A., Eckhardt, B., Ott, E.: Theoretical mechanics: crowd synchrony on the millennium bridge. Nature 438, 43–44 (2005) · doi:10.1038/43843a
[47]Daniels, B.C., Dissanayake, S.T., Trees, B.R.: Synchronization of coupled rotators: Josephson junction ladders and the locally coupled Kuramoto model. Phys. Rev. E 67, 026216 (2003) · doi:10.1103/PhysRevE.67.026216
[48]Filatrella, G., Pedersen, N.F., Lobb, C.J., Barbara, P.: Synchronization of underdamped Josephson-junction arrays. Eur. Phys. J. B 34(1), 3–8 (2003) · doi:10.1140/epjb/e2003-00190-7
[49]Dhamala, M., Wiensefeld, K.: Generalized stability law for Josephson series arrays. Phys. Lett. A 292, 269–274 (2002) · Zbl 0995.78028 · doi:10.1016/S0375-9601(01)00790-3
[50]Pazó, D.: Thermodynamic limit of the first-order phase transition in the Kuramoto model. Phys. Rev. E 72, 046211 (2005)
[51]Xie, F., Hu, G.: Clustering dynamics in globally coupled map lattices. Phys. Rev. E 56, 1567–1570 (1997) · doi:10.1103/PhysRevE.56.1567
[52]Williams, T.L.: Phase coupling by synaptic spread in chains of coupled neuronal oscillators. Science 258, 662–665 (1992) · doi:10.1126/science.1411575
[53]Wilson, M., Bower, J.M.: Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. J. Neurophysiol. 67(4), 981–995 (1992)
[54]Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. U.S.A. 86, 1698–1702 (1989) · doi:10.1073/pnas.86.5.1698
[55]Brown, B.H., Duthie, H.L., Horn, A.R., Smallwood, R.H.: A linked oscillator model of electrical activity of human small intestine. Am. J. Physiol. 229(2), 384–388 (1975)
[56]Robertson-Dunn, B., Linkens, D.A.: A mathematical model of the slow wave electrical activity of the human small intestine. Med. Biol. Eng. 12(6), 750–758 (1974) · doi:10.1007/BF02477440
[57]Linkens, D.: Circuits and systems. IEEE Trans. 21(2), 294–300 (1974)
[58]Brown, B.H., Nwong, K.K., Duthier, K.H.L., Whittaker, G.E., Franks, C.I.: Auto-correlation and visual analysis. Med. Biol. Eng. 9, 305–314 (1971) · doi:10.1007/BF02474084
[59]Duthie, H.L., Kwong, N.K., Brown, B.H., Whittaker, G.E.: Pacesetter potential of the human gastroduodenal junction. Gut 12, 250–256 (1971) · doi:10.1136/gut.12.4.250
[60]Duthie, H.L., Brown, B.H., Robertson-Dunn, B., Kwong, N.K., Whittaker, G.E., Waterfall, W.: Electrical activity in the gastroduodenal area–slow waves in the proximal duodenum. A comparison of man and dog. Am. J. Dig. Dis. 17(4), 344–351 (1972) · doi:10.1007/BF02231736
[61]van der Pol, B.: On oscillation hysteresis in a triode generator with two degrees of freedom. Philos. Mag. 43(3), 700–719 (1922)
[62]van der Pol, B.: The nonlinear theory of electric oscillations. Proc. Inst. Radio Eng. 22, 1051–1086 (1934)