zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Parameter identification of chaotic systems using improved differential evolution algorithm. (English) Zbl 1204.93034
Summary: An improved differential evolution algorithm, named the Taguchi-sliding-based differential evolution algorithm (TSBDEA), is proposed to solve the problem of parameter identification for Chen, Lü and Rossler chaotic systems. The TSBDEA, a powerful global numerical optimization method, combines the differential evolution algorithm (DEA) with the Taguchi-sliding-level method (TSLM). The TSLM is used as the crossover operation of the DEA. Then, the systematic reasoning ability of the TSLM is provided to select the better offspring to achieve the crossover, and consequently enhance the DEA. Therefore, the TSBDEA can be more robust, statistically sound, and quickly convergent. Three illustrative examples of parameter identification for Chen, Lü and Rossler chaotic systems are given to demonstrate the applicability of the proposed TSBDEA, and the computational experimental results show that the proposed TSBDEA not only can find optimal or close-to-optimal solutions but also can obtain both better and more robust results than the DEA.
MSC:
93B30System identification
37D45Strange attractors, chaotic dynamics
70K55Transition to stochasticity (chaotic behavior)
References:
[1]Agiza, H.N., Yassen, M.T.: Synchronization of Rossler and Chen chaotic dynamical systems using active control. Phys. Lett. A 278, 191–197 (2001) · Zbl 0972.37019 · doi:10.1016/S0375-9601(00)00777-5
[2]Babu, B.V., Jehan, M.M.L.: Differential evolution for multi-objective optimization. In: Proc. of the IEEE Congress on Evolutionary Computation, Canberra, Australia, vol. 4, pp. 2696–2703 (2003)
[3]Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zurner, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical Benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006) · Zbl 05516182 · doi:10.1109/TEVC.2006.872133
[4]Chang, W.D.: Parameter identification of Rossler’s chaotic system by an evolutionary algorithm. Chaos Solitons Fractals 29, 1047–1053 (2006) · doi:10.1016/j.chaos.2005.08.121
[5]Chang, W.D.: Parameter identification of Chen and Lü systems: a differential evolution approach. Chaos Solitons Fractals 32, 1469–1476 (2007) · Zbl 1129.93022 · doi:10.1016/j.chaos.2005.11.067
[6]Chen, S., Lü, J.: Parameters identification and synchronization of chaotic systems based upon adaptive control. Phys. Lett. A 299, 353–358 (2002) · doi:10.1016/S0375-9601(02)00724-7
[7]Chen, M., Zhou, D., Shang, Y.: Synchronizing a class of uncertain chaotic systems. Phys. Lett. A 337, 384–390 (2005) · Zbl 1136.34317 · doi:10.1016/j.physleta.2005.02.006
[8]Cheng, S.L., Hwang, C.: Optimal approximation of linear systems by a differential evolution algorithm. IEEE Trans. Syst. Man Cybern. A 31, 698–707 (2001) · doi:10.1109/3468.983425
[9]Dong, Z.Y., Lu, M., Lu, Z., Wong, K.P.: A differential evolution based method for power system planning. In: Proc. of the IEEE Congress on Evolutionary Computation, Vancouver, Canada, pp. 16–21 (2006)
[10]Elabbasy, E.M., Agiza, H.N., El-Dessoky, M.M.: Adaptive synchronization of Lü system with uncertain parameters. Chaos Solitons Fractals 21, 657–667 (2004) · Zbl 1062.34039 · doi:10.1016/j.chaos.2003.12.028
[11]Elabbasy, E.M., Agiza, H.N., El-Dessoky, M.M.: Global synchronization criterion and adaptive synchronization for new chaotic system. Chaos Solitons Fractals 23, 1299–1309 (2005)
[12]Hubler, A.W.: Adaptive control of chaotic systems. Helv. Phys. Acta 62, 343–346 (1989)
[13]Iorio, A.W., Li, X.: Solving rotated multi-objective optimization problems using differential evolution. In: AI Advances in Artificial Intelligence, pp. 861–872 (2004)
[14]Kapitaniak, T.: Continuous control and synchronization in chaotic systems. Chaos Solitons Fractals 6, 237–244 (1995) · Zbl 0976.93504 · doi:10.1016/0960-0779(95)80030-K
[15]Karaboga, N.: Digital IIR filter design using differential evolution algorithm. EURASIP J. Appl. Signal Process. 2005, 1269–1276 (2005) · Zbl 1109.94316 · doi:10.1155/ASP.2005.1269
[16]Kim, J.H., Park, C.W., Kim, E., Park, M.: Adaptive synchronization of T-S fuzzy chaotic systems with unknown parameters. Chaos Solitons Fractals 24, 1353–1361 (2005) · Zbl 1092.37512 · doi:10.1016/j.chaos.2004.09.082
[17]Krishna, A.G.: Optimization of surface grinding operations using a differential evolution approach. J. Mater. Process. Technol. 183, 202–209 (2007) · doi:10.1016/j.jmatprotec.2006.10.010
[18]Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Comput. 9, 448–462 (2005) · Zbl 1076.93513 · doi:10.1007/s00500-004-0363-x
[19]Lu, Z., Shieh, L.S., Chen, G.R.: On robust control of uncertain chaotic systems: a sliding-mode synthesis via chaotic optimization. Chaos Solitons Fractals 18, 819–827 (2003) · Zbl 1068.93053 · doi:10.1016/S0960-0779(03)00033-X
[20]Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local search. IEEE Trans. Evol. Comput. 12, 107–125 (2008) · Zbl 05516156 · doi:10.1109/TEVC.2007.895272
[21]Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[22]Price, K.V., Storn, R., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Berlin (2005)
[23]Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-based differential evolution. IEEE Trans. Evol. Comput. 12, 64–79 (2008) · Zbl 05516149 · doi:10.1109/TEVC.2007.894200
[24]Storn, R.: System design by constraint adaptation and differential evolution. IEEE Trans. Evol. Comput. 3, 22–34 (1999) · Zbl 05452157 · doi:10.1109/4235.752918
[25]Storn, R., Price, K.: Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley, CA (1995)
[26]Storn, R., Price, K.: Minimizing the real functions of the ICEC’96 contest by differential evolution. In: Proc. of IEEE International Conference on Evolutionary Computation, Nagoya, Japan, pp. 842–844 (1996)
[27]Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997) · Zbl 0888.90135 · doi:10.1023/A:1008202821328
[28]Sun, Y.J.: Existence and uniqueness of limit cycle for a class of nonlinear discrete-time systems. Chaos Solitons Fractals 38, 89–96 (2008) · Zbl 1142.39307 · doi:10.1016/j.chaos.2006.10.031
[29]Sun, Y.J.: A simple observer of the generalized Chen chaotic systems. Chaos Solitons Fractals 39, 1641–1644 (2009) · doi:10.1016/j.chaos.2007.06.043
[30]Tsai, J.T., Chou, J.H., Liu, T.K.: Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Trans. Neural Netw. 17, 69–80 (2006) · doi:10.1109/TNN.2005.860885
[31]Vaisakh, K., Srinivas, L.R.: Differential evolution approach for optimal power flow solution. J. Theor. Appl. Inf. Technol. 4, 261–268 (2008)
[32]Wang, J.Y., Huang, D.X.: Parameter estimation for chaotic systems based on hybrid differential evolution algorithm. Acta Phys. Sinica 57, 2755–2760 (2008)
[33]Xue, F., Sanderson, A.C., Bonissone, P.P., Graves, R.J.: Fuzzy logic controlled multi-objective differential evolution. In: Proc. of the IEEE International Conference on Fuzzy Systems, Reno, NV, pp. 720–725 (2005)
[34]Yang, S.S., Duan, C.K.: Generalized synchronization in chaotic systems. Chaos Solitons Fractals 9, 1703–1707 (1998) · Zbl 0946.34040 · doi:10.1016/S0960-0779(97)00149-5
[35]Yassen, M.T.: Adaptive synchronization of Rossler and Lü systems with fully uncertain parameters. Chaos Solitons Fractals 23, 1527–1536 (2005)
[36]Yassen, M.T.: Adaptive synchronization of two different uncertain chaotic systems. Phys. Lett. A 337, 335–341 (2005) · Zbl 1136.34314 · doi:10.1016/j.physleta.2005.01.070
[37]Zhang, R., Ding, J.: Non-linear optimal control of manufacturing system based on modified differential evolution. In: Proc. of the IMACS Multiconference on Computational Engineering in Systems Applications, Beijing, China, pp. 1797–1803 (2006)
[38]Zhang, J., Xu, J.: A new differential evolution for discontinuous optimization problems. In: Proc. of the IEEE International Conference on Natural Computation, Haikou, China, pp. 483–487 (2007)