zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive synchronization of chaotic Cohen-Grossberg neural networks with mixed time delays. (Adaptive synchronization of chaotic Cohen-Crossberg neural networks with mixed time delays.) (English) Zbl 1204.93064
Summary: The problem of adaptive synchronization is investigated for a class of Cohen-Crossberg neural networks with mixed time delays. Based on a Lyapunov-Krasovskii functional and the invariant principle of function differential equations as well as the adaptive control and linear feedback with update law, a linear matrix inequality approach is developed to derive some novel sufficient conditions achieving synchronization of the two coupled networks with mixed time delays. In particular, the mixed time delays in this paper synchronously consist of constant delays, time-varying delays, and distributed delays, which are more general than those discussed in the previous literature. Therefore, the results obtained in this paper comprise and generalize those given in the previous literature. A numerical example and its simulation are provided to show the effectiveness of the theoretical results.
MSC:
93C23Systems governed by functional-differential equations
92B20General theory of neural networks (mathematical biology)
34C28Complex behavior, chaotic systems (ODE)
37D45Strange attractors, chaotic dynamics
37N25Dynamical systems in biology
92C20Neural biology
93D21Adaptive or robust stabilization
References:
[1]Agiza, H.N., Yassen, M.T.: Synchronization of Rossler and Chen chaotic dynamical systems using active control. Phys. Lett. A 278(4), 191–197 (2001) · Zbl 0972.37019 · doi:10.1016/S0375-9601(00)00777-5
[2]Boyd, S., Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)
[3]Cao, J., Lu, J.: Adaptive synchronization of neural networks with or without time-varying delays. Chaos 16(1), 013133 (2006)
[4]Carroll, T.L., Pecora, L.M.: Synchronization chaotic circuits. IEEE Trans. Circuit Syst. 38(4), 453–456 (1991) · doi:10.1109/31.75404
[5]Chen, G., Zhou, J., Liu, Z.: Global synchronization of coupled delayed neural networks and application to chaotic CNN models. Int. J. Bifurc. Chaos 14(7), 2229–2240 (2004) · Zbl 1077.37506 · doi:10.1142/S0218127404010655
[6]Cheng, C., Liao, T., Hwang, C.: Exponential synchronization of a class of chaotic neural networks. Chaos Solitons Fractals 24(1), 197–206 (2005)
[7]Cheng, C., Liao, T., Yan, J., Hwang, C.: Exponential synchronization of a class of neural networks with time-varying delays. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 36(1), 209–215 (2006) · doi:10.1109/TSMCB.2005.856144
[8]Chua, L.O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35(1), 1273–1290 (1988) · doi:10.1109/31.7601
[9]Cichocki, A., Unbehauen, R.: Neural Networks for Optimalition and Signal Processing. Wiley, New York (1993)
[10]Cui, B., Lou, X.: Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control. Chaos Solitons Fractals 39(1), 288–294 (2009) · Zbl 1197.93135 · doi:10.1016/j.chaos.2007.01.100
[11]Fotsin, H.B., Daafouz, J.: Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification. Phys. Lett. A 339(3–5), 304–315 (2005) · Zbl 1145.93313 · doi:10.1016/j.physleta.2005.03.049
[12]Fotsin, H.B., Woafo, P.: Adaptive synchronization of a modified and uncertain chaotic Van der Pol–Duffing oscillator based on parameter identification. Chaos Solitons Fractals 24(5), 1363–1371 (2005) · Zbl 1091.70010 · doi:10.1016/j.chaos.2004.09.101
[13]Gu, K.: An integral inequality in the stability problem of time-delay systems. In: Proceedings of 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 2805–2810 (2000)
[14]He, W., Cao, J.: Adaptive synchronization of a class of chaotic neural networks with known or unknown parameters. Phys. Lett. A 372, 408–416 (2008) · Zbl 1217.92011 · doi:10.1016/j.physleta.2007.07.050
[15]He, G., Cao, Z., Zhu, P., Ogura, H.: Controlling chaos in a chaotic neural network. Neural Netw. 16(8), 1195–1200 (2003) · Zbl 02022381 · doi:10.1016/S0893-6080(03)00055-8
[16]Heagy, J.F., Carroll, T.L., Pecora, L.M.: Experimental and numerical evidence for riddled basins in coupled chaotic systems. Phys. Rev. Lett. 73, 3528–3531 (1994) · doi:10.1103/PhysRevLett.73.3528
[17]Huang, D.: Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E 71, 037203 (2005)
[18]Huang, L., Feng, R., Wang, M.: Synchronization of chaotic systems via nonlinear control. Phys. Lett. A 320(4), 271–275 (2004) · Zbl 1065.93028 · doi:10.1016/j.physleta.2003.11.027
[19]Joya, G., Atencia, M.A., Sandoval, F.: Hopfield neural networks for optimization: study of the different dynamics. Neurocomputing 43(1–4), 219–237 (2002) · Zbl 1016.68076 · doi:10.1016/S0925-2312(01)00337-X
[20]Kakmeni, F., Bowong, S., Tchawoua, C.: Nonlinear adaptive synchronization of a class of chaotic systems. Phys. Lett. A 355, 47–54 (2006) · doi:10.1016/j.physleta.2006.01.103
[21]Lei, Y., Xu, W., Zheng, H.: Synchronization of two chaotic nonlinear gyros using active control. Phys. Lett. A 343(1–3), 153–158 (2005) · Zbl 1194.34090 · doi:10.1016/j.physleta.2005.06.020
[22]Li, W.J., Lee, T.: Hopfield neural networks for affine invariant matching. IEEE Trans. Neural Netw. 12(6), 1400–1410 (2001) · doi:10.1109/72.963776
[23]Li, C., Liao, X., Zhang, X.: Impulsive stabilization and synchronization of a class of chaotic delay systems. Chaos 15, 023104 (2005)
[24]Lu, J., Cao, J.: Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters. Chaos 15, 043901 (2005) · Zbl 1144.37378 · doi:10.1063/1.2089207
[25]Mackevicius, V.: A note on synchronization of diffusion. Math. Comput. Simul. 52, 491–495 (2000) · doi:10.1016/S0378-4754(00)00160-9
[26]Mahboobi, S.H., Shahrokhi, M., Pishkenari, H.N.: Observer-based control design for three well-known chaotic systems. Chaos Solitons Fractals 29(2), 381–392 (2006) · Zbl 1147.93390 · doi:10.1016/j.chaos.2005.08.042
[27]Park, J.H.: Synchronization of Genesio chaotic system via backstepping approach. Chaos Solitons Fractals 27(5), 1369–1375 (2006) · Zbl 1091.93028 · doi:10.1016/j.chaos.2005.05.001
[28]Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[29]Salarieh, H., Alasty, A.: Adaptive synchronization of two chaotic systems with stochastic unknown parameters. Commun. Nonlinear Sci. Numer. Simul. 14(2), 508–519 (2009) · Zbl 1221.93246 · doi:10.1016/j.cnsns.2007.09.002
[30]Sun, Y., Cao, J., Wang, Z.: Exponential synchronization of stochastic perturbed chaotic delayed neural networks. Neurocomputing 70, 2477–2485 (2007) · doi:10.1016/j.neucom.2006.09.006
[31]Wang, C., Su, J.: A new adaptive variable structure control for chaotic synchronization and secure communication. Chaos Solitons Fractals 20(5), 967–977 (2004) · Zbl 1050.93036 · doi:10.1016/j.chaos.2003.10.026
[32]Wang, K., Teng, Z., Jiang, H.: Adaptive synchronization of neural networks with time-varying delay and distributed delay. Physica A 387(2–3), 631–642 (2008) · doi:10.1016/j.physa.2007.09.016
[33]Young, S., Scott, P., Nasrabadi, N.: Object recognition using multilayer Hopfield neural network. IEEE Trans. Image Process. 6(3), 357–372 (1997) · doi:10.1109/83.557336
[34]Yu, W., Cao, J.: Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification. Phys. Lett. A 375(2), 467–482 (2007)
[35]Zhou, J., Chen, T., Xiang, L.: Robust synchronization of delayed neural networks based on adaptive control and parameters identification. Chaos Solitons Fractals 27(4), 905–913 (2006) · Zbl 1091.93032 · doi:10.1016/j.chaos.2005.04.022