zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hamming star-convexity packing in information storage. (English) Zbl 1204.94053
Summary: A major puzzle in neural networks is understanding the information encoding principles that implement the functions of the brain systems. Population coding in neurons and plastic changes in synapses are two important subjects in attempts to explore such principles. This forms the basis of modern theory of neuroscience concerning self-organization and associative memory. Here we wish to suggest an information storage scheme based on the dynamics of evolutionary neural networks, essentially reflecting the meta-complication of the dynamical changes of neurons as well as plastic changes of synapses. The information storage scheme may lead to the development of a complete description of all the equilibrium states (fixed points) of Hopfield networks, a space-filling network that weaves the intricate structure of Hamming star-convexity, and a plasticity regime that encodes information based on algorithmic Hebbian synaptic plasticity.
94A17Measures of information, entropy
92B20General theory of neural networks (mathematical biology)