zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. (English) Zbl 1205.34003
The paper mainly concerns the existence of a solution to a class of boundary value problems for coupled systems of nonlinear fractional differential equations. The article is very similar to the reference [X. Su, Appl. Math. Lett. 22, No. 1, 64–69 (2009; Zbl 1163.34321)]. The novelty is the condition on the boundary which introduces more difficulty in the analysis of the existence of solutions. In particular, the result is obtained by the Schauder fixed point theorem to an operator defined on a suitable function space.
MSC:
34A08Fractional differential equations
34B10Nonlocal and multipoint boundary value problems for ODE
34B27Green functions
47H09Mappings defined by “shrinking” properties
References:
[1]Bai, Z.; Lü, H.: Positive solutions for boundary value problems of nonlinear fractional differential equations, J. math. Anal. appl. 311, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[2]Chang, Y. K.; Nieto, J. J.: Some new existence results for fractional differential inclusions with boundary conditions, Math. comput. Modelling 49, 605-609 (2009) · Zbl 1165.34313 · doi:10.1016/j.mcm.2008.03.014
[3]Deng, W.: Numerical algorithm for the time fractional Fokker–Planck equation, J. comput. Phys. 227, 1510-1522 (2007)
[4]Ibrahim, R. W.; Darus, M.: Subordination and superordination for univalent solutions for fractional differential equations, J. math. Anal. appl. 345, 871-879 (2008) · Zbl 1147.30009 · doi:10.1016/j.jmaa.2008.05.017
[5]Ladaci, S.; Loiseau, J. L.; Charef, A.: Fractional order adaptive high-gain controllers for a class of linear systems, Commun. nonlinear sci. Numer. simul. 13, 707-714 (2008) · Zbl 1221.93128 · doi:10.1016/j.cnsns.2006.06.009
[6]Rida, S. Z.; El-Sherbiny, H. M.; Arafa, A. A. M.: On the solution of the fractional nonlinear Schrödinger equation, Phys. lett. A 372, 553-558 (2008) · Zbl 1217.81068 · doi:10.1016/j.physleta.2007.06.071
[7]Yang, A.; Ge, W.: Positive solutions for boundary value problems of N-dimension nonlinear fractional differential system, Bound. value probl. 2008 (2008) · Zbl 1167.34314 · doi:10.1155/2008/437453
[8]Su, X.; Zhang, S.: Solutions to boundary-value problems for nonlinear differential equations of fractional order, Electron. J. Differential equations 2009, No. 26, 115 (2009) · Zbl 1173.34011 · doi:emis:journals/EJDE/Volumes/2009/26/abstr.html
[9]Ahmad, B.; Nieto, J. J.: Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. value probl. 2009 (2009)
[10]Ahmad, B.; Nieto, J. J.: Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations, Abstr. appl. Anal. 2009 (2009)
[11]Bai, C.; Fang, J.: The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations, Appl. math. Comput. 150, 611-621 (2004) · Zbl 1061.34001 · doi:10.1016/S0096-3003(03)00294-7
[12]Chen, Y.; An, H.: Numerical solutions of coupled Burgers equations with time and space fractional derivatives, Appl. math. Comput. 200, 87-95 (2008) · Zbl 1143.65102 · doi:10.1016/j.amc.2007.10.050
[13]Gafiychuk, V.; Datsko, B.; Meleshko, V.: Mathematical modeling of time fractional reaction–diffusion systems, J. comput. Appl. math. 220, 215-225 (2008)
[14]Gejji, V. D.: Positive solutions of a system of non-autonomous fractional differential equations, J. math. Anal. appl. 302, 56-64 (2005) · Zbl 1064.34004 · doi:10.1016/j.jmaa.2004.08.007
[15]Lazarević, M. P.: Finite time stability analysis of PDα fractional control of robotic time-delay systems, Mech. res. Comm. 33, 269-279 (2006) · Zbl 1192.70008 · doi:10.1016/j.mechrescom.2005.08.010
[16]Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. math. Lett. 22, 64-69 (2009) · Zbl 1163.34321 · doi:10.1016/j.aml.2008.03.001
[17]Gafiychuk, V.; Datsko, B.; Meleshko, V.; Blackmore, D.: Analysis of the solutions of coupled nonlinear fractional reaction–diffusion equations, Chaos solitons fractals 41, 1095-1104 (2009) · Zbl 1198.35123 · doi:10.1016/j.chaos.2008.04.039
[18]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, North-holland mathematics studies 204 (2006)
[19]Podlubny, I.: Fractional differential equations, (1999)