zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On an eco-epidemiological model with prey harvesting and predator switching: local and global perspectives. (English) Zbl 1205.34048
Summary: We study an eco-epidemiological model where the prey disease is modeled by a Susceptible-Infected (SI) scheme. Saturation incidence kinetics is used to model the contact process. The predator population switches among susceptible and infected prey. The prey species is supposed to be commercially viable and undergo constant non-selective harvesting. We study the stability aspects of the basic and the switching models around the infection-free state and the infected steady state from a local as well as a global perspective. Our aim is to study the role of harvesting and switching on the dynamics of disease propagation and/or eradication. A comparison of the local and global dynamical behavior in terms of important system parameters is obtained. Numerical simulations are done to illustrate the analytical results.
34C60Qualitative investigation and simulation of models (ODE)
34D20Stability of ODE
34D30Structural stability of ODE and analogous concepts