zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Almost periodic solutions for shunting inhibitory cellular neural networks without global Lipschitz activaty functions. (English) Zbl 1205.34087
Summary: Shunting inhibitory cellular neural networks with time-varying delays are considered. Without assuming the global Lipschitz conditions of activaty functions, some new sufficient conditions for the existence and exponential stability of the almost periodic solutions are established.
MSC:
34K14Almost and pseudo-periodic solutions of functional differential equations
92B20General theory of neural networks (mathematical biology)
References:
[1]A. Bouzerdoum, R.B. Pinter, Shunting inhibitory cellular neural networks: derivation and stability analysis, in: IEEE Trans. Circuits Syst. 1 – Fundamental Theory and Application, vol. 40, 1993, pp. 215 – 221. · Zbl 0825.93681 · doi:10.1109/81.222804
[2]A. Bouzerdoum, R.B. Pinter, Analysis and analog implementation of directionally sensitive shunting inhibitory Cellular Neural Networks, in: Visual Information Processing: From Neurons to Chips, vol. SPIE-1473, 1991, pp. 29 – 38.
[3]Bouzerdoum, A.; Pinter, R. B.: Nonlinear lateral inhibition applied to motion detection in the fly visual system, Nonlinear vision, 423-450 (1992)
[4]Chen, A.; Cao, J.; Huang, L.: Almost periodic solution of shunting inhibitory cnns with delays, Phys. lett. A 298, 161-170 (2002) · Zbl 0995.92003 · doi:10.1016/S0375-9601(02)00469-3
[5]Vhen, A.; Cao, J.; Huang, L.: Almost periodic solution of shunting inhibitory cnns with delays, Phys. lett. A 298, 161-168 (2002) · Zbl 0995.92003 · doi:10.1016/S0375-9601(02)00469-3
[6]Li, Y.; Liu, C.; Zhu, L.: Global exponential stability of periodic solution of shunting inhibitory cnns with delays, Phys. lett. A, No. 337, 46-54 (2005) · Zbl 1135.34338 · doi:10.1016/j.physleta.2005.01.008
[7]Huang, X.; Cao, J.: Almost periodic solution of inhibitory cellular neural networks with time-varying delays, Phys. lett. A 314, 222-231 (2003) · Zbl 1052.82022 · doi:10.1016/S0375-9601(03)00918-6
[8]Liu, B.; Huang, L.: Existence and stability of almost periodic solution for shunting inhibitory cellular neural networks with continuously distributed delays, Phys. lett. A 349, 177-183 (2006)
[9]Liu, B.; Huang, L.: Almost periodic solutions for shunting inhibitory cellular neural networks with time-varying delays, Appl. math. Lett. 20, 70-79 (2007) · Zbl 1133.34360 · doi:10.1016/j.aml.2006.02.025
[10]Liu, B.; Huang, L.: Existence and stability of almost periodic solution for shunting inhibitory cellular neural networks with time-varying delays, Chaos solitons fract. 31, 211-219 (2007) · Zbl 1161.34352 · doi:10.1016/j.chaos.2005.09.052
[11]Liu, Y.; You, Z.; Cao, L.: On the almost periodic solution of generalized shunting inhibitory cellular neural networks with continuously distributed delays, Phys. lett. A 360, 122-128 (2006)
[12]Liu, Y.; You, Z.; Cao, L.: Almost periodic solution of shunting inhibitory cellular neural networks with time varying and continuously distributed delays, Phys. lett. A 364, 17-23 (2007)
[13]Cai, M.; Xiong, W.: Almost periodic solutions for shunting inhibitory cellular neural networks without global Lipschitz and bounded activation functions, Phys. lett. A 362, 417-422 (2007) · Zbl 1197.34057 · doi:10.1016/j.physleta.2006.10.076
[14]Ding, H.; Liang, J.; Xiao, T.: Existence of almost periodic solutions for sicnns with time-varying delays, Phys. lett. A 372, No. 33, 5411-5416 (2008) · Zbl 1223.34059 · doi:10.1016/j.physleta.2008.06.042
[15]Fink, A. M.: Almost periodic differential equations, (1974)
[16]He, C. Y.: Almost periodic differential equations, (1992)