zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Energetic balance for the Rayleigh-Stokes problem of an Oldroyd-B fluid. (English) Zbl 1205.35223
Summary: The dissipation, the power due to the shear stress at the wall, the change of kinetic energy with time as well as the boundary layer thickness corresponding to the Rayleigh-Stokes problem for an Oldroyd-B fluid are established. The corresponding expressions of Maxwell, second grade and Newtonian fluids, performing the same motions, are obtained as the limiting cases of our general results. Specific features of the four models are emphasized by means of the asymptotic approximations and graphical representations. It is worth mentioning that in comparison with the Newtonian model, the power of the shear stress at the wall and the dissipation for Oldroyd-B fluids increase while the boundary layer thickness decreases.

35Q35PDEs in connection with fluid mechanics
76A05Non-Newtonian fluids
76D08Lubrication theory
76M45Asymptotic methods, singular perturbations (fluid mechanics)
[1]Oldroyd, J. G.: On the formulation of rheological equations of state, Proc. roy. Soc. lond. A 200, 523-541 (1950) · Zbl 1157.76305 · doi:10.1098/rspa.1950.0035
[2]Oldroyd, J. G.: The motion of an elastico-viscous liquid contained between coaxial cylinders, Quart. J. Mech. appl. Math. 4, 271-282 (1951) · Zbl 0043.39504 · doi:10.1093/qjmam/4.3.271
[3]Bird, R. B.; Armstrong, R. C.; Hassager, O.: Dynamics of polymer liquids, Fluid mechanics (1987)
[4]Bühler, K.; Zierep, J.: Energetische betrachtungen zum Rayleigh-Stokes problem, Appl. math. Mech. 5, 539-540 (2005)
[5]Zierep, J.; Fetecau, C.: Energetic balance for the Rayleigh-Stokes problem of a second grade fluid, Int. J. Eng. sci. 45, 155-162 (2007) · Zbl 1213.76023 · doi:10.1016/j.ijengsci.2006.09.001
[6]Zierep, J.; Fetecau, C.: Energetic balance for the Rayleigh-Stokes problem of a Maxwell fluid, Int. J. Eng. sci. 45, 617-627 (2007) · Zbl 1213.76026 · doi:10.1016/j.ijengsci.2007.04.015
[7]Fetecau, C.; Fetecau, C.: The first problem of Stokes for an Oldroyd-B fluid, Int. J. Non-linear mech. 38, 1539-1544 (2003)
[8]Rahaman, K. D.; Ramkissoon, H.: Unsteady axial viscoelastic pipe flows, J. non-Newtonian fluid mech. 57, 27-38 (1995)
[9]Wood, W. P.: Transient viscoelastic helical flows in pipes of circular and annular cross-section, J. non-Newtonian fluid mech. 100, 115-126 (2001) · Zbl 1014.76004 · doi:10.1016/S0377-0257(01)00130-6
[10]Srivastava, P. M.: Non-steady helical flow of a visco-elastic liquid, Arch. mech. Stos. 2, No. 18, 145-150 (1966)
[11]Hayat, T.; Siddiqui, A. M.; Asghar, S.: Some simple flows of an Oldroyd-B fluid, Int. J. Eng. sci. 39, 135-147 (2001)
[12]Fetecau, C.; Prasad, S. C.; Rajagopal, K. R.: A note on the flow induced by a constantly accelerating plate in an Oldroyd-B fluid, Appl. math. Modelling (2006)
[13]Rajagopal, K. R.: On the creeping flow of the second order fluid, J. non-Newtonian fluid mech. 15, 239-276 (1984) · Zbl 0568.76015 · doi:10.1016/0377-0257(84)80008-7
[14]Rajagopal, K. R.: On boundary conditions for fluids of the differential type, Navier–Stokes equations and related non-linear problems, 273-299 (1995) · Zbl 0846.35107
[15]Sneddon, I. N.: Functional analysis, Encyclopedia of physics (1955)
[16]Christov, C. I.; Jordan, P. M.: Comment on ”Stokes first problem for an Oldroyd-B fluid in a porous half space” [Phys. Fluids 17 (2005) 023101], Phys. fluids 21, 069101-069102 (2009)
[17]I.C. Christov, C.I. Christov, Comment on ”On a class of exact solutions of the equations of motion of a second grade fluid” by C. Fetecau and J. Zierep (Acta Mech. 150 (2001) 135–138), Acta Mech. doi:10.1007/s00707-010-0300-2
[18]Fetecau, C.; Zierep, J.: On a class of exact solutions of the equations of motion of a second grade fluid, Acta mech. 150, 135-138 (2001) · Zbl 0992.76006 · doi:10.1007/BF01178551
[19]Teipel, I.: The impulsive motion of a flat plate in a visco-elastic fluid, Acta mech. 39, 277-279 (1981)
[20]Rajagopal, K. R.; Srinivasa, A. R.: A thermodyanmic frame work for rate type fluid models, J. non-Newtonian fluid mech. 88, 207-227 (2000) · Zbl 0960.76005 · doi:10.1016/S0377-0257(99)00023-3