zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaotic bursting lag synchronization of Hindmarsh-Rose system via a single controller. (English) Zbl 1205.37025
Authors’ abstract: Chaotic bursting lag synchronization of Hindmarsh-Rose system is investigated. Two lag synchronization schemes with only a single controller are proposed to synchronize Hindmarsh-Rose chaotic system via a back stepping method. Especially in the second scheme, only one state variable is contained in the controller. Based on Lyapunov stability theory, the sufficient conditions for synchronization are obtained analytically in both cases. Finally, numerical simulations are provided to show the effectiveness of the developed methods.
MSC:
37B25Lyapunov functions and stability; attractors, repellers
37C10Vector fields, flows, ordinary differential equations
References:
[1]Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys. rev. Lett. 64, 821 (1990) · Zbl 0938.37019
[2]Ma, J.; Ying, H. P.; Pu, Z. S.: An anti-control scheme for spiral under Lorenz chaotic signal, Chin. phys. Lett. 22, 1065 (2005)
[3]Ghosh, D.; Banerjee, S.: Adaptive scheme for synchronization-based multiparameter estimation from a single chaotic time series and its applications, Phys. rev. E 78, 056211 (2008)
[4]Ma, J.; Ying, H. P.; Pu, Z. S.; Wang, C. N.: Chaos control and synchronization by using an intermittent feedback, Impulsive dynamical systems and applications FEB, part 1 suppl. S 13, 32-39 (2006)
[5]Ghosh, D.: Nonlinear-observer-based synchronization scheme for multiparameter estimation, Europhys. lett. 84, 40012 (2008)
[6]Ghosh, D.: Generalized projective synchronization in time-delayed systems: nonlinear observer approach, Chaos 19, 013102 (2009)
[7]Yu, H.; Peng, J.: Chaotic synchronization and control in nonlinear-coupled hindmarsh – rose neural systems, Chaos solitons fract. 29, 342 (2006) · Zbl 1095.92020 · doi:10.1016/j.chaos.2005.08.075
[8]Belykh, I.; De Lange, E.; Hasler, M.: Synchronization of bursting neurons: what matters in the network topology, Phys. rev. Lett., 188101 (2005)
[9]Dhamala, M.; Jirsa, V. K.; Ding, M. Z.: Enhancement of neural synchrony by time delay, Phys. rev. Lett. 92, 074104 (2004)
[10]Shuai, J. W.; Durand, D. M.: Phase synchronization in two coupled chaotic neurons, Phys. lett. A 264, 289 (1999) · Zbl 0949.37015 · doi:10.1016/S0375-9601(99)00816-6
[11]Ivanchenko, M. V.; Osipov, G. V.; Shalfeev, V. D.; Krths, J.: Phase synchronization in ensembles of bursting oscillators, Phys. rev. Lett. 93, 134101 (2004)
[12]Wang, Q. Y.; Lu, Q. S.: Phase synchronization in small-world chaotic neural networks, Chin. phys. Lett. 22, 1329 (2005)
[13]Bowong, S.: Stability analysis for the synchronization of chaotic systems with different order: application to secure communications, Phys. lett. A 326, 102-113 (2004) · Zbl 1161.94389 · doi:10.1016/j.physleta.2004.04.004
[14]Ghosh, D.; Chowdhury, A. R.; Saha, P.: On the various kinds of synchronization in delayed Duffing – van der Pol system, Commun. nonlinear sci. Numer. simul. 13, No. 4, 790-803 (2008) · Zbl 1221.34196 · doi:10.1016/j.cnsns.2006.07.001
[15]Zheng, Y. H.; Lu, Q. S.: Spatiotemporal patterns and chaotic burst synchronization in a small-world neuronal network, Phys. A 387, 3719 (2008)
[16]Yoshioka, M.: Chaos synchronization in gap – junction-coupled neurons, Phys. rev. E 71, 065203(R) (2005)
[17]Wang, Q. Y.; Lu, Q. S.; Chen, G. R.: Ordered bursting synchronization and complex wave propagation in a ring neuronal network, Physica A 374, 869 (2007)
[18]Wang, H. X.; Lu, Q. S.; Wang, Q. Y.: Complete synchronization in coupled chaotic HR neurons with symmetric coupling schemes, Chin. phys. Lett. 22, 2173 (2005)
[19]Ma, J.; Wang, Q. Y.; Jin, W. Y.; Xia, Y. F.: Control chaos in the hindmarsh – rose neuron by using intermittent feedback with one variable, Chin. phys. Lett. 25, No. 10, 3582-3585 (2008)
[20]Ma, J.; Ying, H. P.; Liu, Y.; Li, S. R.: Development and transition of spiral wave in the coupled hindmarsh – rose neurons in two-dimensional space, Chin. phys. B 18, No. 1, 98-105 (2009)
[21]Hindmarsh, J. L.; Rose, R. M.: A model of neuronal bursting using three coupled first order differential equations, Proc. roy. Soc. lond. B biol. Sci. 221, 87 (1984)
[22]Park, J. H.: Synchronization of Genesio chaotic system via backstepping approach, Chaos solitons fract. 27, 1369-1375 (2006) · Zbl 1091.93028 · doi:10.1016/j.chaos.2005.05.001
[23]Hassan, K. K.: Nonlinear systems, (1996)