zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On a Hilbert-type linear series operator and its applications. (English) Zbl 1205.47011
A Hilbert-type linear series operator and its norm are studied. In particular, several generalizations of Hilbert-type inequalities whose kernels are symmetric and homogeneous of the first order are presented and discussed. Furthermore, the reverse forms of Hilbert-type inequalities are also derived and several consequences of the obtained results are pointed out.
47A30Operator norms and inequalities
26D15Inequalities for sums, series and integrals of real functions
[1]Brnetic, I.; Krnic, M.; Pecaric, J.: Multiple Hilbert and Hardy-Hilbert inequalities with non-conjugate parameters, Bull. austral. Math. soc. 71, No. 3, 447-457 (2005) · Zbl 1079.26013 · doi:10.1017/S0004972700038454
[2]Brnetic, I.; Pecaric, J.: Generalization of inequalities of Hardy-Hilbert type, Math. inequal. Appl. 7, No. 2, 217-225 (2004)
[3]Chen, Z.; Xu, J.: New extensions of Hilbert’s inequality with multiple parameters, Acta math. Hungar. 117, No. 4, 383-400 (2007) · Zbl 1164.26020 · doi:10.1007/s10474-007-6135-1
[4]Gao, M.: On Hilbert’s inequality and its applications, J. math. Anal. appl. 212, No. 1, 316-323 (1997)
[5]Gao, M.; Yang, B.: On the extended Hilbert’s inequality, Proc. amer. Math. soc. 126, No. 3, 751-759 (1998) · Zbl 0935.26011 · doi:10.1090/S0002-9939-98-04444-X
[6]Hardy, G. H.; Littlewood, J. E.; Polya, G.: Inequalities, (1952) · Zbl 0047.05302
[7]Hong, Y.: All-side generalization about Hardy-Hilbert integral inequalities, Acta math. Sinica (Chin. Ser.) 41, No. 4, 619-626 (2001) · Zbl 1034.26017
[8]Hong, Y.: On the norm of a series operator with a symmetric and homogeneous kernel and its application, Acta math. Sinica (Chin. Ser.) 51, No. 2, 365-370 (2008) · Zbl 1174.26014
[9]Krnic, M.; Pecaric, J.: General Hilbert’s and Hardy’s inequalities, Math. inequal. Appl. 8, No. 1, 29-51 (2005) · Zbl 1079.26018
[10]Kuang, J.: Note on new extensions of Hilbert’s integral inequality, J. math. Anal. appl. 235, No. 2, 608-614 (1999) · Zbl 0951.26013 · doi:10.1006/jmaa.1999.6373
[11]Kuang, J.: On new generalizations of Hilbert’s inequality and their applications, J. math. Anal. appl. 245, No. 1, 248-265 (2000) · Zbl 0968.26010 · doi:10.1006/jmaa.2000.6766
[12]Kuang, J.: Applied inequalities, (2004)
[13]Mitrinovic, D. S.; Pecaric, J. E.; Fink, A. M.: Inequalities involving functions and their integrals and derivatives, (1991) · Zbl 0744.26011
[14]Pachpatte, B.: On some new inequalities similar to Hilbert’s inequality, J. math. Anal. appl. 226, No. 1, 166-179 (1998) · Zbl 0911.26012 · doi:10.1006/jmaa.1998.6043
[15]Yang, B.; Debnath, L.: Some inequalities involving π and an application to Hilbert’s inequality, Appl. math. Lett. 12, No. 8, 101-105 (1999) · Zbl 0977.26009 · doi:10.1016/S0893-9659(99)00129-9
[16]Yang, B.: On new generalizations of Hilbert’s inequality, J. math. Anal. appl. 248, No. 1, 29-40 (2000) · Zbl 0970.26009 · doi:10.1006/jmaa.2000.6860
[17]Yang, B.; Debnath, L.: On the extended Hardy-Hilbert inequalities, J. math. Anal. appl. 272, No. 1, 187-199 (2002) · Zbl 1009.26016 · doi:10.1016/S0022-247X(02)00151-8
[18]Yang, B.; Rassias, T. M.: On the way of weight coefficient and research for the Hilbert-type inequalities, Math. inequal. Appl. 6, No. 4, 625-658 (2003) · Zbl 1046.26012
[19]Yang, B.: On new extension of Hilbert’s inequality, Acta math. Hungar. 104, No. 4, 291-299 (2004) · Zbl 1062.26023 · doi:10.1023/B:AMHU.0000036288.28531.a3
[20]Yang, B.: On the norm of a self-adjoint operator and applications to the Hilbert’s type inequalities, Bull. belg. Math. soc. Simon stevin 13, No. 3, 577-584 (2006) · Zbl 1128.47010
[21]Yang, B.: On the norm of a Hilbert’s type linear operator and applications, J. math. Anal. appl. 325, No. 1, 529-541 (2007) · Zbl 1114.47010 · doi:10.1016/j.jmaa.2006.02.006
[22]Yang, B.: On a Hilbert-type operator with a symmetric homogeneous kernel of -1-order and applications, J. inequal. Appl. (2007)
[23]Yang, B.: The norm of operator and Hilbert-type inequalities, (2009)
[24]Zhao, C.; Debnath, L.: Some new inverse type Hilbert integral inequalities, J. math. Anal. appl. 262, No. 1, 411-418 (2001) · Zbl 0988.26014 · doi:10.1006/jmaa.2001.7595