zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solving linear and nonlinear initial value problems by the projected differential transform method. (English) Zbl 1205.65205
Summary: We propose a novel computational algorithm for solving linear and nonlinear initial value problems by using the modified version of differential transform method (DTM), which is called the projected differential transform method (PDTM). The PDTM can be easily applied to the initial value problems with less computational work. For the several illustrative examples, the computational results are compared with those obtained by many other methods; the Adomian decomposition, the variational iteration and the spline method. For all examples, the PDTM provides exact solutions. It has been shown that the PDTM is a reliable algorithm in obtaining analytic as well as approximate solution for the initial value problems.
MSC:
65L05Initial value problems for ODE (numerical methods)
34A30Linear ODE and systems, general
34A34Nonlinear ODE and systems, general
References:
[1]Adomian, G.: Solving frontier problems of physics: the decomposition method, (1994)
[2]Ayaz, Fatma: On the two-dimensional differential transform method, Appl. math. Comput. 143, No. 2 – 3, 361-374 (2003) · Zbl 1023.35005 · doi:10.1016/S0096-3003(02)00368-5
[3]Dehghab, Mehdi; Shokri, Ali: Numerical solution of the nonlinear Klein – fordon equation using radial basis functions, J. comput. Appl. math. 230, 400-410 (2009) · Zbl 1168.65398 · doi:10.1016/j.cam.2008.12.011
[4]Kangalgil, F.; Ayaz, Fatma: Solitary wave solutions for the KdV and mkdv equations by differential transform method, Chaos solitons fractals 1, 464-472 (2009) · Zbl 1198.35222 · doi:10.1016/j.chaos.2008.02.009
[5]Chen, Cha’o Kuang; Ho, Shing Huei: Solving partial differential equations by two-dimensional differential transform method, Appl. math. Comput. 106, 171-179 (1999) · Zbl 1028.35008 · doi:10.1016/S0096-3003(98)10115-7
[6]Hassan, I. H. A.: Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems, Chaos solitons fractals 36, 53-65 (2008) · Zbl 1152.65474 · doi:10.1016/j.chaos.2006.06.040
[7]He, Ji-Huan: Variational iteration method – a kind of non-linear analytical technique: some examples, Int. J. Nonlinear mech. 34, No. 4, 699-708 (1999)
[8]He, Ji-Huan: Variational iteration method – some recent results and new interpretations, J. comput. Appl. math. 207, 3-17 (2007) · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009
[9]Shoua, Da-Hua; He, Ji-Huan: Beyond Adomian method: the variational iteration method for solving heat-like and wave-like equations with variable coefficients, Phys. lett. A 372, No. 3, 233-237 (2008) · Zbl 1217.35091 · doi:10.1016/j.physleta.2007.07.011
[10]Jang, M. J.; Chen, C. L.; Liu, Y. C.: Two-dimensional differential transform for partial differential equations, Appl. math. Comput. 121, 261-270 (2001) · Zbl 1024.65093 · doi:10.1016/S0096-3003(99)00293-3
[11]Jang, Bongsoo: Solutions to the non-homogeneous parabolic problems by the extended HADM, Appl. math. Comput. 191, No. 2, 466-483 (2007) · Zbl 1193.65182 · doi:10.1016/j.amc.2007.02.132
[12]Jang, Bongsoo: Two-point boundary value problems by the extended Adomian decomposition method, J. comput. Appl. math. 219, No. 1, 253-262 (2008) · Zbl 1145.65049 · doi:10.1016/j.cam.2007.07.036
[13]Mohanty, R. K.: An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients, Appl. math. Comput. 165, 229-236 (2005) · Zbl 1070.65076 · doi:10.1016/j.amc.2004.07.002
[14]Rashidinia, J.; Mohammadi, R.; Jalilian, R.: Spline methods for the solution of hyperbolic equation with variable coefficients, Numer. methods partial differential equations 23, No. 6, 1411-1419 (2007) · Zbl 1131.65078 · doi:10.1002/num.20229
[15]Soufyane, A.; Boulmalf, M.: Solution of linear and nonlinear parabolic equations by the decomposition method, Appl. math. Comput. 162, 687-693 (2005) · Zbl 1063.65111 · doi:10.1016/j.amc.2004.01.005
[16]Wazwaz, Abdul-Majid; Gorguisb, Alice: Exact solutions for heat-like and wave-like equations with variable coefficients, Appl. math. Comput. 149, 15-29 (2004) · Zbl 1038.65103 · doi:10.1016/S0096-3003(02)00946-3
[17]Zhou, J. K.: Differential transformation and its application for electrical circuits, (1986)