zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variational iteration method for singular perturbation initial value problems. (English) Zbl 1205.65210
Summary: The variational iteration method (VIM) is applied to solve singular perturbation initial value problems (SPIVPs). The obtained sequence of iterates is based on the use of Lagrange multipliers. Some convergence results of VIM for solving SPIVPs are given. Moreover, the illustrative examples show the efficiency of the method.
MSC:
65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
34E15Asymptotic singular perturbations, general theory (ODE)
65L20Stability and convergence of numerical methods for ODE
References:
[1]Wazwaz, A. M.: The variational iteration method for analytic treatment for linear and nonlinear odes, Appl. math. Comput. 212, 120-134 (2009) · Zbl 1166.65353 · doi:10.1016/j.amc.2009.02.003
[2]A. Saadatmandi, M. Dehghan, Variational iteration method for solving a generalized pantograph equation, Comput. Math. Appl., in press, doi:10.1016/j.camwa.2009.03.017
[3]Salkuyeh, D. K.: Convergence of the variational iteration method for solving linear systems of odes with constant coefficients, Comput. math. Appl. 56, 2027-2033 (2008) · Zbl 1165.65376 · doi:10.1016/j.camwa.2008.03.030
[4]Dejager, E. M.; Jiang, F. R.: The theory of singular perturbation, (1996)
[5]He, J. H.; Wu, X. H.: Variational iteration method: new development and applications, Comput. math. Appl. 54, 881-894 (2007) · Zbl 1141.65372 · doi:10.1016/j.camwa.2006.12.083
[6]He, J. H.: Variational iteration method: some recent results and new interpretations, J. comput. Appl. math. 207, 3-17 (2007) · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009
[7]He, J. H.; Wu, X. H.: Variational iteration method for autonomous ordinary differential systems, Appl. math. Comput. 114, 115-123 (2000) · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[8]He, J. H.: Variational iteration method for delay differential equations, Commun. nonlinear sci. Numer. simul. 2, No. 4, 235-236 (1997) · Zbl 0924.34063
[9]He, J. H.: Some applications of nonlinear fractional differential equation and their approximations, Bull. sci. Technol. 15, No. 12, 86-90 (1999)
[10]He, J. H.: A new approach to linear partial differential equations, Commun. nonlinear sci. Numer. simul. 2, No. 4, 230-235 (1997) · Zbl 0923.35046 · doi:10.1016/S1007-5704(97)90029-0
[11]He, J. H.: Approximate solution of nonlinear differential equation with convolution product nonlinearities, Comput. methods appl. Mech. engrg. 167, 69-73 (1998) · Zbl 0932.65143 · doi:10.1016/S0045-7825(98)00109-1
[12]He, J. H.; Wu, G. C.; Austin, F.: The variational iteration method which should be followed, Nonlinear sci. Lett. A 1, No. 1, 1-30 (2010)
[13]Lu, J. F.: Variational iteration method for solving two point boundary value problems, J. comput. Appl. math. 207, 92-95 (2008) · Zbl 1119.65068 · doi:10.1016/j.cam.2006.07.014
[14]Xu, L.: Variational iteration method for solving integral equations, Comput. math. Appl. 54, 1071-1078 (2007) · Zbl 1141.65400 · doi:10.1016/j.camwa.2006.12.053
[15]Rafei, M.; Ganji, D. D.; Daniali, H.; Pashaei, H.: The variational iteration method for nonlinear oscillators with discontinuities, J. sound vibration 30, No. 6, 1338-1360 (1992)
[16]Darvishi, M. T.; Khani, F.; Soliman, A. A.: The numerical simulation for stiff systems of ordinary differential equations, Comput. math. Appl. 54, 1055-1063 (2007) · Zbl 1141.65371 · doi:10.1016/j.camwa.2006.12.072
[17]Tatari, M.; Dehghan, M.: On the convergence of he’s variational iteration method, J. comput. Appl. math. 207, 121-128 (2007) · Zbl 1120.65112 · doi:10.1016/j.cam.2006.07.017
[18]M. Mamode, Variational iteration method and initial value problems, Appl. Math. Comput., in press, doi:10.1016/j.amc.2009.05.008
[19]Jr., R. E. O’malley: Singular perturbation methods for ordinary differential equations, (1990)
[20]R. Saadati, M. Dehghan, S.M. Vaezpour, M. Saravi, The convergence of He’s variational iteration method for solving integral equations, Comput. Math. Appl., in press, doi:10.1016/j.camwa.2009.03.008
[21]Yu, Z. H.: Variational iteration method for solving the multi-pantograph delay equation, Phys. lett. A 372, 6475-6479 (2008) · Zbl 1225.34024 · doi:10.1016/j.physleta.2008.09.013
[22]Marinca, V.; Herisanu, N.; Bota, C.: Application of the variational iteration method to some nonlinear one dimensional oscillations, Meccanica 43, 75-79 (2008)
[23]Xiao, A. G.; Zhao, Y. X.: Convergence of parallel multistep hybrid methods for singular perturbation problems, Appl. math. Comput. 215, 2139-2148 (2009) · Zbl 1178.65092 · doi:10.1016/j.amc.2009.08.004