zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New conservative difference schemes for a coupled nonlinear Schrödinger system. (English) Zbl 1205.65242
The authors numerically analyze two conservative finite difference schemes for solving a coupled nonlinear Schrödinger system with mass and energy as conserved quantities. One scheme is a nonlinear implicit two-level scheme. The other scheme is a linear three-level scheme. Second-order convergence and unconditional stability of the linear scheme are established by means of an induction argument and the discrete energy method. Numerical experiments show the efficiency of the uncoupled linear scheme which can be run with the use of parallel computation.
65M06Finite difference methods (IVP of PDE)
35Q55NLS-like (nonlinear Schrödinger) equations
65M12Stability and convergence of numerical methods (IVP of PDE)
65Y05Parallel computation (numerical methods)
[1]Zhang, F.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme, Appl. math. Comput. 71, 165-177 (1995) · Zbl 0832.65136 · doi:10.1016/0096-3003(94)00152-T
[2]Li, S.; Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein – Gordon equation, SIAM J. Numer. anal. 32, 1839-1875 (1995) · Zbl 0847.65062 · doi:10.1137/0732083
[3]Sun, Jian-Qiang; Qin, Meng-Zhao: Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system, Comput. phys. Commun. 155, 221-235 (2003) · Zbl 1196.65195 · doi:10.1016/S0010-4655(03)00285-6
[4]Jian-Qiang, Sun; Xiao-Yan, Gu; Zhong-Qi, Ma: Multisymplectic difference schemes for coupled nonlinear Schrödinger system, Chin. J. Comput. phys. 21, 321-328 (2004)
[5]Sonnier, W. J.; Christov, C. I.: Strong coupling of Schrödinger equations: conservative scheme approach, Math. comp. Simul. 69, 514-525 (2005) · Zbl 1119.65396 · doi:10.1016/j.matcom.2005.03.016
[6]Ismail, M. S.; Taha, T. R.: Numerical simulation of coupled nonlinear Schrödinger equation, Math. comp. Simul. 56b, 547-562 (2001) · Zbl 0972.78022 · doi:10.1016/S0378-4754(01)00324-X
[7]Ismail, M. S.; Alamri, S. Z.: Highly accurate finite difference method for coupled nonlinear Schrödinger equation, Int. J. Comp. math. 81, 333-351 (2004) · Zbl 1058.65090 · doi:10.1080/00207160410001661339
[8]Ismail, M. S.; Taha, T. R.: A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation, Math. comp. Simul. 74, 302-311 (2007) · Zbl 1112.65079 · doi:10.1016/j.matcom.2006.10.020
[9]Chang, Qianshun; Jiang, Hong: A conservative difference scheme for the Zakharov equations, J. comput. Phys. 113, 309-319 (1994) · Zbl 0807.76050 · doi:10.1006/jcph.1994.1138
[10]Chang, Qianshun; Guo, Boling; Jiang, Hong: Finite difference method for the generalized Zakharov equations, Math. comput. 64, 537-553 (1995) · Zbl 0827.65138 · doi:10.2307/2153438
[11]Zhang, Luming: Convergence of a conservative difference scheme for a class of Klein – Gordon – Schrödinger equations in one space dimension, Appl. math. Comput. 163, 343-355 (2005) · Zbl 1080.65084 · doi:10.1016/j.amc.2004.02.010
[12]Wang, Tingchun; Chen, Juan; Zhang, Luming: Conservative difference methods for the Klein – Gordon-Zakharov equations, J. comput. Appl. math. 205, 430-452 (2007) · Zbl 1123.65091 · doi:10.1016/j.cam.2006.05.008
[13]Zhang, Luming: A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator, Appl. math. Comput. 145, 603-612 (2003) · Zbl 1037.65092 · doi:10.1016/S0096-3003(02)00842-1
[14]Furihata, D.: Finite difference schemes for ut=xαδgδu that inherit energy conservation or dissipation property, J. comput. Phys. 156, 181-205 (1999) · Zbl 0945.65103 · doi:10.1006/jcph.1999.6377
[15]Furihata, D.: Finite-difference schemes for nonlinear wave equation that inherit energy conservation property, J. comput. Appl. math. 134, 37-57 (2001) · Zbl 0989.65099 · doi:10.1016/S0377-0427(00)00527-6
[16]Matsuo, Takayasu: New conservative schemes with discrete variational derivatives for nonlinear wave equations, J. comput. Appl. math. 203, 32-56 (2007) · Zbl 1120.65096 · doi:10.1016/j.cam.2006.03.009
[17]Matsuo, Takayasu; Furihata, D.: Dissipative or conservative finite difference schemes for complex-valued nonlinear partial differential equations, J. comput. Phys. 171, 425-447 (2001) · Zbl 0993.65098 · doi:10.1006/jcph.2001.6775
[18]Zhou, Y. L.: Application of discrete functional analysis to the finite difference methods, (1990)
[19]F.E. Browder. Existence and uniqueness theorems for solutions of nonlinear boundary value problems, in: Application of nonlinear partial differential equations, in: R. Finn (Ed.), Proceedings of Symposia in Applied Mathematics, vol. 17, AMS, Providence,1965, pp. 24 – 49. · Zbl 0145.35302
[20]Wang, T.; Zhang, L.; Chen, F.: Numerical approximation for a coupled Schrödinger system, Chin. J. Comput. phys. 25, 179-185 (2008)
[21]Wang, T.; Zhang, L.; Chen, F.: Numerical analysis of a multi-symplectic scheme for a strongly coupled schröinger system, Appl. math. Comput. 203, 413-431 (2008) · Zbl 1158.65086 · doi:10.1016/j.amc.2008.04.053