zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. (English) Zbl 1205.65312

The authors introduce a new unifying framework for hybridization of finite element methods for second order elliptic problems. The framework covers mixed methods using Raviart-Thomas or Brezzi-Douglas-Marini finite elements, the classical continuous finite element method, some nonconforming finite elements and a large variety of discontinuous Galerkin methods. For the methods in this framework the only globally coupled degrees of freedom are those of an approximation of the solution on the boundary of the elements. For the discontinuous Galerkin methods this approach allows to significantly reduce the number of globally coupled degrees of freedom.

Moreover using this approach it is possible to use different methods in different subdomains and automatically couple them. This framework also allows to devise novel methods using new mortaring techniques. The authors describe the general structure of the hybridized finite element methods, given also some implementation details, and construct several examples of hybridizable finite element methods.

MSC:
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
35J25Second order elliptic equations, boundary value problems