zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The numerical solution of second-order boundary-value problems by collocation method with the Haar wavelets. (English) Zbl 1205.74187
Summary: An efficient numerical method based on uniform Haar wavelets is proposed for the numerical solution of second-order boundary-value problems (BVPs) arising in the mathematical modeling of deformation of beams and plate deflection theory, deflection of a cantilever beam under a concentrated load, obstacle problems and many other engineering applications. The Haar wavelet basis permits to enlarge the class of functions used so far in the collocation framework. The performance of the Haar wavelets is compared with the Walsh wavelets, semi-orthogonal B-spline wavelets, spline functions, Adomian decomposition method (ADM), finite difference method, and Runge-Kutta method coupled with nonlinear shooting method. A more accurate solution can be obtained by wavelet decomposition in the form of a multi-resolution analysis of the function which represents the solution of a given problem. Through this analysis the solution is found on the coarse grid points, and then refined towards higher accuracy by increasing the level of the Haar wavelets. Neumann’s boundary conditions which are problematic for most of the numerical methods are automatically coped with. The main advantage of the Haar wavelet based method is its efficiency and simple applicability for a variety of boundary conditions. The convergence analysis of the proposed method alongside numerical procedure for multi-point boundary-value problems are given to test wider applicability and accuracy of the method.
MSC:
74S30Other numerical methods in solid mechanics
65L60Finite elements, Rayleigh-Ritz, Galerkin and collocation methods for ODE
65T60Wavelets (numerical methods)
74K10Rods (beams, columns, shafts, arches, rings, etc.) in solid mechanics
References:
[1]Na, T. Y.: Computational methods in engineering boundary value problems, (1979)
[2]Bisshopp, K.; Drucker, D. C.: Appl. math., Appl. math. 3, 272-275 (1945)
[3]Glabisz, W.: The use of Walsh-wavelets packets in linear boundary value problems, Comput. struct. 82, 131-141 (2004)
[4]Siraj-Ul-Islam; Noor, M. A.; Tirmizi, I. A.; Khan, M. A.: Quadratic non-polynomial spline approach to the solution of a system of second-order boundary-value problems, Appl. math. Comput. 179, 153-160 (2006) · Zbl 1100.65067 · doi:10.1016/j.amc.2005.11.091
[5]Robert, S.; Shipman, J.: Solution of troesch’s two-point boundary value problems by shooting techniques, J. comput. Phys. 10, 232-241 (1972) · Zbl 0247.65052 · doi:10.1016/0021-9991(72)90063-0
[6]Wiebel, E.: Confinement of a plasma column by radiation pressure in the plasma in a magnetic field, (1958)
[7]Keller, H. H.; Holdrege, E. S.: Radiation heat transfer for annular fins of trapezoidal profile, Int. J. High perform. Comput. appl. 92, 113-116 (1970)
[8]Tatari, M.; Dehgan, M.: The use of the Adomian decomposition method for solving multipoint boundary value problems, Phys. scr. 73, 672-676 (2006)
[9]Al-Said, E.: The use of cubic splines in the numerical solution of system of second-order boundary-value problems, Int. J. Comput. math. Appl. 42, 861-869 (2001) · Zbl 0983.65089 · doi:10.1016/S0898-1221(01)00204-8
[10]Lakestani, M.; Dehgan, M.: The solution of a second-order nonlinear differential equation with Neumann boundary conditions using semi-orthogonal B-spline wavelets, Int. J. Comput. math. 83, 685-694 (2006) · Zbl 1114.65090 · doi:10.1080/00207160601025656
[11]Tirmizi, I. A.; Twizell, E. H.: Higher-order finite-difference methods for nonlinear second-order two-point boundary-value problems, Appl. math. Lett. 15, 897-902 (2002) · Zbl 1013.65078 · doi:10.1016/S0893-9659(02)00060-5
[12]Katti, C. P.; Baboo, S.: Radiation heat transfer for annular fins of trapezoidal profile, Appl. math. Comput. 75, 287-302 (1996)
[13]Siraj-Ul-Islam; Tirmizi, I. A.; Haq, F.: Quartic non-polynomial splines approach to the solution of a system of second-order boundary-value problems, Int. J. High perform. Comput. appl. 21, 42-49 (2007)
[14]Hsiao, C. H.; Wang, W. -J.: Haar wavelet approach to nonlinear stiff systems, Math. comput. Simulation 57, 347-353 (2001) · Zbl 0986.65062 · doi:10.1016/S0378-4754(01)00275-0
[15]Hsiao, C. H.: Haar wavelet approach to linear stiff systems, Math. comput. Simulation 64, 561-567 (2004) · Zbl 1039.65058 · doi:10.1016/j.matcom.2003.11.011
[16]Lepik, U.: Numerical solution of differential equations using Haar wavelets, Math. comput. Simulation 68, 127-143 (2005) · Zbl 1072.65102 · doi:10.1016/j.matcom.2004.10.005
[17]Lepik, U.: Numerical solution of evolution equations by the Haar wavelet method, Appl. math. Comput. 185, 695-704 (2007) · Zbl 1110.65097 · doi:10.1016/j.amc.2006.07.077
[18]Goswami, J. C.; Chan: Fundamentals of wavelets. Theory, algorithms, and applications, (1999)
[19]Mallat, S.: A wavelet tour of signal processing, (1999) · Zbl 0998.94510
[20]Jameson, L.; Waseda, T.: Error estimation using wavelet analysis for data assimilation: eewadai, J. atmos. Ocean. technol. 17, 1235-1246 (2000)
[21]Strang, G.; Nguyen, T.: Wavelets and filter banks, (1996)
[22]Hashih, H.; Behiry, S.; El-Shamy, N.: Numerical integration using wavelets, Appl. math. Comput. (2009)