zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global existence of weak solutions for a shallow water equation. (English) Zbl 1205.76049
Summary: A nonlinear shallow water equation, which includes the famous Camassa-Holm (CH) and Degasperis-Procesi (DP) equations as special cases, is investigated. Provided that initial value u 0 H s (1s3 2), u o L 1 (R) and (1-δ x 2 )u 0 does not change sign, it is shown that there exists a unique global weak solution to the equation.

76B03Existence, uniqueness, and regularity theory (fluid mechanics)
35Q35PDEs in connection with fluid mechanics
[1]Degasperis, A.; Procesi, M.: Asymptotic integrability, Symmetry and perturbation theory, 23-37 (1999) · Zbl 0963.35167
[2]Bressan, A.; Constantin, A.: Global dissipative solutions of the Camassa–Holm equation, Anal. appl. (Singap.) 5, 1-27 (2007) · Zbl 1139.35378 · doi:10.1142/S0219530507000857
[3]Coclite, G. M.; Karlsen, K. H.: On the well-posedness of the Degasperis–Procesi equation, J. funct. Anal. 223, 60-91 (2006) · Zbl 1090.35142 · doi:10.1016/j.jfa.2005.07.008
[4]Escher, J.; Liu, Y.; Yin, Z. Y.: Global weak solutions and blow-up structire for the Degasperis–Procesi equation, J. funct. Anal. 241, 457-485 (2006) · Zbl 1126.35053 · doi:10.1016/j.jfa.2006.03.022
[5]Matsuno, Y.: Multisoliton solutions of the Degasperis–Procesi equation and their peakon limit, Inverse problems 21, 1553-1570 (2005) · Zbl 1086.35095 · doi:10.1088/0266-5611/21/5/004
[6]Camassa, R.; Holm, D.: An integrable shallow water equation with peaked solitons, Phys. rev. Lett. 71, 1661-1664 (1993) · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[7]Johnson, R. S.: Camassa–Holm, Korteweg de Vries and related models for water waves, J. fluid mech. 455, 63-82 (2002) · Zbl 1037.76006 · doi:10.1017/S0022112001007224
[8]Johnson, R. S.: On solutions of the Camassa–Holm equation, Proc. R. Soc. lond. 459, 1687-1708 (2003) · Zbl 1039.76006 · doi:10.1098/rspa.2002.1051
[9]Fokas, A.; Fuchssteiner, B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D 4, 821-831 (1981) · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[10]Constantin, A.; Lannes, D.: The hydro-dynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Arch. ration. Mech. anal. 193, 165-186 (2009) · Zbl 1169.76010 · doi:10.1007/s00205-008-0128-2
[11]Constantin, A.: On the scattering problem for the Camassa–Holm equation, Proc. R. Soc. lond. 457, 953-970 (2001) · Zbl 0999.35065 · doi:10.1098/rspa.2000.0701
[12]Lenells, J.: Conservation laws of the Camassa–Holm equation, J. phys. A 38, 869-880 (2005) · Zbl 1076.35100 · doi:10.1088/0305-4470/38/4/007
[13]Mckean, H. P.: Fredholm determinants and the Camassa–Holm hierarchy, Comm. pure appl. Math. 56, 638-680 (2003)
[14]Constantin, A.; Escher, J.: Global existence and blow-up for a shallow water equation, Ann. sc. Norm. super. Pisa cl. Sci. 26, No. 4, 303-328 (1998) · Zbl 0918.35005 · doi:numdam:ASNSP_1998_4_26_2_303_0
[15]Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. inst. Fourier (Grenoble) 50, 321-362 (2000) · Zbl 0944.35062 · doi:10.5802/aif.1757 · doi:numdam:AIF_2000__50_2_321_0
[16]Constantin, A.: On the inverse spectral problem for the Camassa–Holm equation, J. funct. Anal. 155, 352-363 (1998) · Zbl 0907.35009 · doi:10.1006/jfan.1997.3231
[17]Constantin, A.; Escher, J.: Global weak solutions for a shallow water equation, Indiana univ. Math. J. 47, 1527-1545 (1998) · Zbl 0930.35133 · doi:10.1512/iumj.1998.47.1466
[18]Constantin, A.; Kolev, B.: Geodesic flow on the diffeomorphism group of the circle, Comment. math. Helv. 78, 787-804 (2003) · Zbl 1037.37032 · doi:10.1007/s00014-003-0785-6
[19]Constantin, A.; Kappeler, T.; Kolev, B.; Topalov, P.: On geodesic exponential maps of the Virasoro group, Ann. global anal. Geom. 31, 155-180 (2007) · Zbl 1121.35111 · doi:10.1007/s10455-006-9042-8
[20]Kouranbaeva, S.: The Camassa–Holm equation as a geodesic flow on the diffeomorphism group, J. math. Phys. 40, 857-868 (1999) · Zbl 0958.37060 · doi:10.1063/1.532690
[21]Misiolek, G. A.: Shallow water equation as a geodesic flow on the Bott-Virasoro group, J. geom. Phys. 24, 203-208 (1998) · Zbl 0901.58022 · doi:10.1016/S0393-0440(97)00010-7
[22]Mollinet, L.: On well-posedness results for Camassa–Holm equation on the line, J. nonlinear math. Phys. 11, 521-533 (2004) · Zbl 1069.35076 · doi:10.2991/jnmp.2004.11.4.8
[23]Constantin, A.; Mckean, H. P.: A shallow water equation on the circle, Comm. pure appl. Math. 52, 949-982 (1999) · Zbl 0940.35177 · doi:10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D
[24]Constantin, A.; Escher, J.: Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation, Comm. pure appl. Math. 51, 475-504 (1998) · Zbl 0934.35153 · doi:10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
[25]Constantin, A.; Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations, Acta math. 181, 229-243 (1998) · Zbl 0923.76025 · doi:10.1007/BF02392586
[26]Li, Y.; Olver, P.: Well-posedness and blow-up solutions for an integ nonlinearly dispersive model wave equation, J. differential equations 162, 27-63 (2000) · Zbl 0958.35119 · doi:10.1006/jdeq.1999.3683
[27]Xin, X.; Zhang, P.: On the weak solutions to a shallow water equation, Comm. pure appl. Math. 53, 1411-1433 (2000) · Zbl 1048.35092 · doi:10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5
[28]Bressan, A.; Constantin, A.: Global conservative solutions of the Camassa–Holm equation, Arch. ration. Mech. anal. 183, 215-239 (2007) · Zbl 1105.76013 · doi:10.1007/s00205-006-0010-z
[29]Parker, A.: On the Camassa–Holm equation and a direct method of solution: III. N-soliton solutions, Proc. R. Soc. lond. 461, 3893-3911 (2005)
[30]Degasperis, A.; Holm, D.; Hone, A.: A new integral equation with peakon solutions, Theoret. and math. Phys. 133, 1461-1472 (2002)
[31]Dullin, H. R.; Gottwald, G. A.; Holm, D. D.: Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid dynam. Res. 33, 73-79 (2003) · Zbl 1032.76518 · doi:10.1016/S0169-5983(03)00046-7
[32]Lundmark, H.; Szmigielski, J.: Multi-peakon solutions of the Degasperis–Procesi equation, Inverse problems 19, 1241-1245 (2003) · Zbl 1041.35090 · doi:10.1088/0266-5611/19/6/001
[33]Vakhnenko, V. O.; Parkes, E. J.: Periodic and solitary-wave solutions of the Degasperis–Procesi equation, Chaos solitons fractals 20, 1059-1073 (2004) · Zbl 1049.35162 · doi:10.1016/j.chaos.2003.09.043
[34]Holm, D. D.; Staley, M. F.: Wave structure and nonlinear balances in a family of evolutionary pdes, SIAM J. Appl. dyn. Syst. 2, 323-380 (2003) · Zbl 1088.76531 · doi:10.1137/S1111111102410943
[35]Escher, J.; Kolev, B.: The Degasperis–Procesi equation as a non-metric Euler equation
[36]Escher, J.; Seiler, J.: The periodic b-equation and Euler equations on the circle · Zbl 1213.35351 · doi:10.1142/S1402925111001155
[37]Henry, D.: Infinite propagation speed for the Degasperis–Procesi equation, J. math. Anal. appl. 311, 755-759 (2005) · Zbl 1094.35099 · doi:10.1016/j.jmaa.2005.03.001
[38]Lenells, J.: Traveling wave solutions of the Degasperis–Procesi equation, J. math. Anal. appl. 306, 72-82 (2005) · Zbl 1068.35163 · doi:10.1016/j.jmaa.2004.11.038
[39]Liu, Y.; Yin, Z. Y.: Global existence and blow-up phenomena for the Degasperis–Procesi equation, Comm. math. Phys. 267, 801-820 (2006) · Zbl 1131.35074 · doi:10.1007/s00220-006-0082-5
[40]Yin, Z. Y.: On the Cauchy problem for an intergrable equation with peakon solutions, Illinois J. Math. 47, 649-666 (2003) · Zbl 1061.35142 · doi:http://www.math.uiuc.edu/~hildebr/ijm/fall03/final/yin.html
[41]Yin, Z. Y.: Global weak solutions for a new periodic integrable equation with peakon solutions, J. funct. Anal. 212, 182-194 (2004) · Zbl 1059.35149 · doi:10.1016/j.jfa.2003.07.010
[42]Lin, Z. W.; Liu, Y.: Stability of peakons for the Degasperis–Procesi equation, Comm. pure appl. Math. 62, 125-146 (2009)
[43]Mustafa, O. G.: A note on the Degasperis–Procesi equation, J. nonlinear math. Phys. 12, 10-14 (2005) · Zbl 1067.35078 · doi:10.2991/jnmp.2005.12.1.2
[44]Lai, S. Y.; Wu, Y. H.: Global solutions and blow-up phenomena to a shallow water equation, J. differential equations 249, 693-706 (2010) · Zbl 1198.35041 · doi:10.1016/j.jde.2010.03.008
[45]Kato, T.; Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations, Comm. pure appl. Math. 41, 891-907 (1998) · Zbl 0671.35066 · doi:10.1002/cpa.3160410704