zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model. (English) Zbl 1205.86007
Summary: Proper orthogonal decomposition (POD) and singular value decomposition (SVD) methods are used to study a finite difference discretization scheme (FDS) for the tropical Pacific Ocean reduced gravity model. Ensembles of data are compiled from transient solutions computed from the discrete equation system derived by FDS for the tropical Pacific Ocean reduced gravity model. The optimal orthogonal bases are used to reconstruct the elements of the ensemble with POD and SVD. Combining the above approach with a Galerkin projection procedure yields a new optimizing FDS model of lower dimensions and high accuracy for the tropical Pacific Ocean reduced gravity model. An error estimate of the new reduced order optimizing FDS model is then derived. Numerical examples are presented illustrating that the error between the POD approximate solution and the full FDS solution is consistent with previously obtained theoretical results, thus validating the feasibility and efficiency of POD method.
MSC:
86-08Computational methods (geophysics)
86A05Hydrology, hydrography, oceanography