zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A model for real-time failure prognosis based on hidden Markov model and belief rule base. (English) Zbl 1205.90105
Summary: As one of most important aspects of condition-based maintenance (CBM), failure prognosis has attracted an increasing attention with the growing demand for higher operational efficiency and safety in industrial systems. Currently there are no effective methods which can predict a hidden failure of a system real-time when there exist influences from the changes of environmental factors and there is no such an accurate mathematical model for the system prognosis due to its intrinsic complexity and operating in potentially uncertain environment. Therefore, this paper focuses on developing a new hidden Markov model (HMM) based method which can deal with the problem. Although an accurate model between environmental factors and a failure process is difficult to obtain, some expert knowledge can be collected and represented by a belief rule base (BRB) which is an expert system in fact. As such, combining the HMM with the BRB, a new prognosis model is proposed to predict the hidden failure real-time even when there are influences from the changes of environmental factors. In the proposed model, the HMM is used to capture the relationships between the hidden failure and monitored observations of a system. The BRB is used to model the relationships between the environmental factors and the transition probabilities among the hidden states of the system including the hidden failure, which is the main contribution of this paper. Moreover, a recursive algorithm for online updating the prognosis model is developed. An experimental case study is examined to demonstrate the implementation and potential applications of the proposed real-time failure prognosis method.
90B25Reliability, availability, maintenance, inspection, etc. (optimization)
62F15Bayesian inference
60K10Applications of renewal theory