zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new method for solving fully fuzzy linear programming problems. (English) Zbl 1205.90310
Summary: F. H. Lotfi, T. Allahviranloo, M. A. Jondabeh and L. Alizadeh [Appl. Math. Modelling 33, No. 7, 3151–3156 (2009; Zbl 1205.90313)] pointed out that there is no method in literature for finding the fuzzy optimal solution of fully fuzzy linear programming (FFLP) problems and proposed a new method to find the fuzzy optimal solution of FFLP problems with equality constraints. In this paper, a new method is proposed to find the fuzzy optimal solution of same type of fuzzy linear programming problems. It is easy to apply the proposed method compare to the existing method for solving the FFLP problems with equality constraints occurring in real life situations. To illustrate the proposed method numerical examples are solved and the obtained results are discussed.
MSC:
90C70Fuzzy programming
90C05Linear programming
References:
[1]Bellman, R. E.; Zadeh, L. A.: Decision making in a fuzzy environment, Manage. sci. 17, 141-164 (1970) · Zbl 0224.90032
[2]Tanaka, H.; Okuda, T.; Asai, K.: On fuzzy mathematical programming, J. cybernetics syst. 3, 37-46 (1973) · Zbl 0297.90098 · doi:10.1080/01969727308545912
[3]Zimmerman, H. J.: Fuzzy programming and linear programming with several objective functions, Fuzzy set. Syst. 1, 45-55 (1978) · Zbl 0364.90065 · doi:10.1016/0165-0114(78)90031-3
[4]Campos, L.; Verdegay, J. L.: Linear programming problems and ranking of fuzzy numbers, Fuzzy set. Syst. 32, 1-11 (1989) · Zbl 0674.90061 · doi:10.1016/0165-0114(89)90084-5
[5]Maleki, H. R.; Tata, M.; Mashinchi, M.: Linear programming with fuzzy variables, Fuzzy set. Syst. 109, 21-33 (2000) · Zbl 0956.90068 · doi:10.1016/S0165-0114(98)00066-9
[6]Maleki, H. R.: Ranking functions and their applications to fuzzy linear programming, Far east J. Math. sci. 4, 283-301 (2002) · Zbl 1006.90093
[7]Ganesan, K.; Veeramani, P.: Fuzzy linear programs with trapezoidal fuzzy numbers, Ann. oper. Res. 143, 305-315 (2006) · Zbl 1101.90091 · doi:10.1007/s10479-006-7390-1
[8]Ebrahimnejad, A.; Nasseri, S. H.; Lotfi, F. H.; Soltanifar, M.: A primal-dual method for linear programming problems with fuzzy variables, Eur. J. Ind. eng. 4, 189-209 (2010)
[9]Buckley, J.; Feuring, T.: Evolutionary algorithm solution to fuzzy problems: fuzzy linear programming, Fuzzy set. Syst. 109, 35-53 (2000) · Zbl 0956.90064 · doi:10.1016/S0165-0114(98)00022-0
[10]Hashemi, S. M.; Modarres, M.; Nasrabadi, E.; Nasrabadi, M. M.: Fully fuzzified linear programming, solution and duality, J. intell. Fuzzy syst. 17, 253-261 (2006) · Zbl 1101.90405
[11]Allahviranloo, T.; Lotfi, F. H.; Kiasary, M. K.; Kiani, N. A.; Alizadeh, L.: Solving full fuzzy linear programming problem by the ranking function, Appl. math. Sci. 2, 19-32 (2008)
[12]Dehghan, M.; Hashemi, B.; Ghatee, M.: Computational methods for solving fully fuzzy linear systems, Appl. math. Comput. 179, 328-343 (2006)
[13]Lotfi, F. H.; Allahviranloo, T.; Jondabeha, M. A.; Alizadeh, L.: Solving a fully fuzzy linear programming using lexicography method and fuzzy approximate solution, Appl. math. Modell. 33, 3151-3156 (2009)
[14]Kaufmann, A.; Gupta, M. M.: Introduction to fuzzy arithmetic theory and applications, (1985)
[15]Liou, T. S.; Wang, M. J.: Ranking fuzzy numbers with integral value, Fuzzy set. Syst. 50, 247-255 (1992) · Zbl 1229.03043 · doi:10.1016/0165-0114(92)90223-Q