zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution. (English) Zbl 1205.90313
Summary: This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy triangular number is approximated to its nearest symmetric triangular number, with the assumption that all decision variables are symmetric triangular. An optimal solution to the above-mentioned problem is a symmetric fuzzy solution. Every FLP models turned into two crisp complex linear problems; first a problem is designed in which the center objective value will be calculated and since the center of a fuzzy number is preferred to (its) margin. With a special ranking on fuzzy numbers, the FFLP transform to multi objective linear programming (MOLP) where all variables and parameters are crisp.

MSC:
90C70Fuzzy programming
90C29Multi-objective programming; goal programming
90C08Special problems of linear programming
References:
[1]Bellman, R. E.; Zadeh, L. A.: Decision making in a fuzzy environment, Manage. sci. 17, 141-164 (1970) · Zbl 0224.90032
[2]Wang, D.: An inexact approach for linear programming problems with fuzzy objective and resources, Fuzzy sets syst. 89, 61-68 (1997)
[3]Chanas, S.; Zielinski, P.: On the equivalence of two optimization methods for fuzzy linear programming problems, Eur. J. Oper. res. 121, 56-63 (2000) · Zbl 0959.90069 · doi:10.1016/S0377-2217(99)00011-9
[4]Fang, S. C.; Hu, C. F.; Wang, H. F.; Wu, S. Y.: Linear programming with fuzzy coefficients in constraints, Comp. math. Appl. 37, 63-76 (1999) · Zbl 0931.90069 · doi:10.1016/S0898-1221(99)00126-1
[5]Delgado, M.; Verdegay, J. L.; Vila, M. A.: A general model for fuzzy linear programming, Fuzzy sets syst. 29, 21-29 (1989) · Zbl 0662.90049 · doi:10.1016/0165-0114(89)90133-4
[6]Verdegay, J. L.: A dual approach to solve the fuzzy linear programming problem, Fuzzy sets syst. 14, 131-141 (1984) · Zbl 0549.90064 · doi:10.1016/0165-0114(84)90096-4
[7]Herrera, F.; Verdegay, J. L.: Approaching fuzzy linear programming problems, Interactive fuzzy optimization (1991) · Zbl 0766.90085
[8]Allahviranloo, T.; Shamsolkotabi, K. H.; Kiani, N. A.; Alizadeh, L.: Fuzzy integer linear programming problems, Int. J. Comput. math. Sci. 2, No. 4, 167-181 (2007) · Zbl 1115.90069
[9]Maleki, H. R.: Ranking functions and their applications to fuzzy linear programming, Far east J. Math. sci. (FJMS) 4, 283-301 (2002) · Zbl 1006.90093
[10]Mahdavi-Amiri, N.; Nasseri, S. H.: Duality in fuzzy number linear programming by use of a certain linear ranking function, Appl. math. Comput. 180, 206-216 (2006) · Zbl 1102.90080 · doi:10.1016/j.amc.2005.11.161
[11]Nehi, H. Mishmast; Maleki, H. R.; Mashinchi, M.: Solving fuzzy number linear programming problem by lexicographic ranking function, Ital. J. Pure appl. Math. 15, 9-20 (2004)
[12]Maleki, H. R.; Tata, M.; Mashinchi, M.: Linear programing with fuzzy variables, Fuzzy sets syst. 109, 21-33 (2000) · Zbl 0956.90068 · doi:10.1016/S0165-0114(98)00066-9
[13]Van Hop, N.: Solving fuzzy (stochastic) linear programming problems ..., Inform. sci. (2007)
[14]Garcia-Aguado, C.; Verdegay, J. L.: On the sensitivity of membership functions for fuzzy linear programming problems, Fuzzy sets syst. 56, 47-49 (1993) · Zbl 0804.90137 · doi:10.1016/0165-0114(93)90184-J
[15]Li, Ch.; Liao, X.; Yu, J.: Tabu search for fuzzy optimization and applications, Inform. sci. 158, 313 (2004) · Zbl 1049.90143 · doi:10.1016/j.ins.2003.07.015
[16]C.V. Negoita, Fuzziness in Management, OPSA/TIMS, Miami, 1970.
[17]Buckley, J. J.: Fuzzy programming and the Pareto optimal set, Fuzzy set syst. 10, No. 1, 57-63 (1983) · Zbl 0517.90073 · doi:10.1016/S0165-0114(83)80104-3
[18]Mahadavi-Amiri, N.; Nasseri, S. H.: Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables, Fuzzy sets syst. 158, 1961-1978 (2007) · Zbl 1135.90446 · doi:10.1016/j.fss.2007.05.005
[19]Hashemi, S. M.; Modarres, M.; Nasrabadi, E.; Nasrabadi, M. M.: Fully fuzzified linear programming, solution and duality, J. intell. Fuzzy syst. 17, No. 3, 253-261 (2006) · Zbl 1101.90405
[20]Ma, M.; Kandel, A.; Friedman, M.: A new approach for defuzzification, Set syst. 111, 351-356 (2000) · Zbl 0968.93046 · doi:10.1016/S0165-0114(98)00176-6
[21]Xu, Z.; Chen, J.: An interactive method for fuzzy multiple attribute group decision making, Inform. sci. 177, 248263 (2007) · Zbl 1142.68556 · doi:10.1016/j.ins.2006.03.001