zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical analysis and computing for option pricing models in illiquid markets. (English) Zbl 1205.91168
Summary: Nowadays market liquidity has become an issue of very high concern in financial risk management. This paper deals with the numerical analysis and computing of nonlinear models of option pricing that appear when illiquid market effects are taken into account. A consistent monotone finite difference scheme is proposed and a relationship between the discretization step size is obtained, ensuring nonnegative and stable numerical solutions and avoiding spurious oscillations.
91G60Numerical methods in mathematical finance
65M06Finite difference methods (IVP of PDE)
60H35Computational methods for stochastic equations
[1]Sharpe, W. F.; Alexander, G. J.; Bailey, J. V.: Investments, (1999)
[2]Jorion, P.: Value at risk, (2000)
[3]Kyle, A.: Continuous auctions and insider trading, Econometrica 53, 1315-1335 (1985) · Zbl 0571.90010 · doi:10.2307/1913210
[4]Back, K.: Asymmetric information and options, Review of financial studies 6, 435-472 (1993)
[5]Frey, R.; Patie, P.: Risk management for derivatives in illiquid markets: a simulation study, Advances in finance and stochastics, 137-159 (2002) · Zbl 1002.91031
[6]Liu, H.; Yong, J.: Option pricing with an illiquid underlying asset market, Journal of economic dynamics and control 29, 2125-2156 (2005) · Zbl 1198.91210 · doi:10.1016/j.jedc.2004.11.004
[7]Company, R.; Jódar, L.; Pintos, J. -R.: A numerical method for European option pricing with transaction costs nonlinear equation, Mathematical and computer modelling 50, 910-920 (2009) · Zbl 1185.91174 · doi:10.1016/j.mcm.2009.05.019
[8]Kangro, R.; Nicolaides, R.: Far field boundary conditions for black–Scholes equations, SIAM journal on numerical analysis 38, No. 4, 1357-1368 (2000) · Zbl 0990.35013 · doi:10.1137/S0036142999355921
[9]Golub, G.; Loan, V.: Matrix computations, (1996)
[10]Xiao, F.; Yabe, T.; Ito, T.: Constructing oscillation preventing scheme for advection equation by rational function, Computer physics communications 29, 1-12 (1996) · Zbl 0921.76118 · doi:10.1016/0010-4655(95)00124-7
[11]Smith, G. D.: Numerical solution of partial differential equations: finite difference methods, (1985)