zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Networked H filtering for linear discrete-time systems. (English) Zbl 1205.93096
Summary: This paper studies the problem of networked H filtering for linear discrete-time systems. A new model is proposed as the filtering error system to simultaneously capture the communication constraint, random packet dropout and quantization effects in the networked systems. A sufficient condition is presented for the filtering error system to be mean square exponentially stable with a prescribed H performance by employing the multiple Lyapunov function method. The obtained condition depends on some parameters of the networked systems, such as the access sequence of nodes, packet dropout rate and quantization density. With these parameters fixed, a design procedure for the desired H filter is also presented based on the derived condition. Finally, an illustrative example is utilized to show the effectiveness of the proposed method.
93C55Discrete-time control systems
93C05Linear control systems
93E11Filtering in stochastic control
[1]R. Brockett, Stabilization of motor networks, in: 34th IEEE Conference on Decision and Control, New Orleans, USA, 1995, pp. 1484 – 1488.
[2]Dacic, D. B.; Nesic, D.: Quadratic stabilization of linear networked control systems via simultaneous protocol and controller design, Automatica 43, 1145-1155 (2007) · Zbl 1123.93076 · doi:10.1016/j.automatica.2006.12.027
[3]Fu, M. Y.; Xie, L. H.: The sector bound approach to quantized feedback control, IEEE transaction on automatic control 50, 1698-1711 (2005)
[4]Gao, H. J.; Chen, T. W.: H estimation for uncertain systems with limited communication capacity, IEEE transaction on automatic control 52, 2070-2084 (2007)
[5]Gao, H. J.; Chen, T. W.: A new approach to quantized feedback control systems, Automatica 44, 534-542 (2008)
[6]Gao, H. J.; Wang, C. H.: A delay-dependent approach to robust H filtering for uncertain discrete-time state-delayed systems, IEEE transaction on signal processing 52, 1631-1640 (2004)
[7]Hespanha, J. P.; Naghshtabrizi, P.; Xu, Y. G.: A survey of recent results in networked control systems, Proceedings of the IEEE 95, 138-162 (2007)
[8]D. Hristu, Stabilization of LTI systems with communication constraints, in: American Control Conference, Chicago, Illinois, USA, 2000, pp. 2342 – 2346.
[9]Huang, M. Y.; Dey, S.: Stability of Kalman filtering with Markovian packet losses, Automatica 43, 598-607 (2007)
[10]Kalman, R. E.: A new approach to linear filtering and prediction problems, Journal of basic engineering 82, 35-45 (1960)
[11]Lian, F. L.; Moyne, J. R.; Tilbury, D. M.: Modelling and optimal controller design of networked control systems with multiple delays, International journal of control 76, 591-606 (2003) · Zbl 1050.93038 · doi:10.1080/0020717031000098426
[12]Matveev, A. S.; Savkin, A. V.: The problem of state estimation via asynchronous communication channels with irregular transmission times, IEEE transaction on automatic control 48, 670-676 (2003)
[13]Nagpal, K. M.; Khargonekar, P. P.: Filtering and smoothing in an H setting, IEEE transaction on automatic control 36, 152-166 (1991) · Zbl 0758.93074 · doi:10.1109/9.67291
[14]Niu, Y. G.; Jia, T. G.; Wang, X. Y.; Yang, F. W.: Output-feedback control design for ncss subject to quantization and dropout, Information sciences 179, 3804-3813 (2009) · Zbl 1171.93328 · doi:10.1016/j.ins.2009.07.006
[15]Peng, C.; Tian, Y. C.: Networked H control of linear systems with state quantization, Information sciences 177, 5763-5774 (2007) · Zbl 1126.93338 · doi:10.1016/j.ins.2007.05.025
[16]Plarre, K.; Bullo, F.: On Kalman filtering for detectable systems with intermittent observations, IEEE transaction on automatic control 54, 386-390 (2009)
[17]Sahebsara, M.; Chen, T. W.; Shah, S. L.: Optimal H filtering in networked control systems with multiple packet dropouts, System and control letters 57, 696-702 (2008) · Zbl 1153.93034 · doi:10.1016/j.sysconle.2008.01.011
[18]Sahebsara, M.; Chen, T. W.; Shah, S. L.: Optimal H2 filtering with random sensor delay, multiple packet dropout and uncertain observations, International journal of control 80, 292-301 (2007) · Zbl 1140.93486 · doi:10.1080/00207170601019500
[19]Shen, B.; Wang, Z. D.; Shu, H. S.; Wei, G. L.: H filtering for nonlinear discrete-time stochastic systems with randomly varying sensor delays, Automatica 45, 1032-1037 (2009) · Zbl 1162.93039 · doi:10.1016/j.automatica.2008.11.009
[20]Smith, S. C.; Seiler, P.: Estimation with lossy measurements: jump estimators for jump systems, IEEE transaction on automatic control 48, 2163-2171 (2003)
[21]Song, H. B.; Yu, L.; Zhang, W. A.: H filtering of network-based systems with random delay, Signal processing 89, 615-622 (2009) · Zbl 1157.93529 · doi:10.1016/j.sigpro.2008.10.005
[22]Sun, S. L.; Xie, L. H.; Xiao, W. D.; Soh, Y. C.: Optimal linear estimation for systems with multiple packet dropouts, Automatica 44, 1333-1342 (2008)
[23]Tian, E. G.; Yue, D.; Peng, C.: Quantized output feedback control for networked control systems, Information sciences 178, 2734-2749 (2008) · Zbl 1179.93096 · doi:10.1016/j.ins.2008.01.019
[24]Tian, Y. C.; Levy, D.: Compensation for control packet dropout in networked control systems, Information sciences 178, 1263-1278 (2008) · Zbl 1139.93300 · doi:10.1016/j.ins.2007.10.012
[25]Walsh, G. C.; Ye, H.: Scheduling of networked control systems, IEEE control system magazine 21, 57-65 (2001)
[26]Wang, Z. D.; Ho, D. W. C.; Liu, X. H.: Variance-constrained filtering for uncertain stochastic systems with missing measurements, IEEE transaction on automatic control 48, 1254-1342 (2003)
[27]Yue, D.; Han, Q. L.: Network-based robust H filtering for uncertain linear systems, IEEE transaction on signal processing 54, 4293-4301 (2006)
[28]G.S. Zhai, B. Hu, K. Yasuda, A. Michel, Qualitative analysis of discrete-time switched systems, in: American Control Conference, Anchorage, Alaska, USA, 2002, pp. 1880 – 1885.
[29]L. Zhang, Access Scheduling and Controller Design in Networked Control Systems, Ph.D. Thesis, University of Maryland, 2005.
[30]Zhang, W. A.; Yu, L.; Song, H. B.: H filtering of networked discrete-time systems with random packet losses, Information sciences 179, 3944-3955 (2009) · Zbl 1187.93132 · doi:10.1016/j.ins.2009.07.016
[31]Zhivoglyadov, P. V.; Middleton, R. H.: Networked control design for linear systems, Automatica 39, 743-750 (2003) · Zbl 1022.93018 · doi:10.1016/S0005-1098(02)00306-0