zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sharp bounds for the extreme zeros of classical orthogonal polynomials. (English) Zbl 1206.33008
Using the property that the classical orthogonal polynomials satisfy a second order differential equation the authors obtain very sharp bounds for the extreme zeros of the polynomials in question. The numerical tests with Jacobi, Gegenbauer, Laguerre and Hermite polynomials show that the obtained bounds are better than the previously known bounds presented in different papers by Moak, Saff, Varga, Ismail, Li and Krasikov.
MSC:
33C45Orthogonal polynomials and functions of hypergeometric type
References:
[1]Area, I.; Dimitrov, D. K.; Godoy, E.; Ronveaux, A.: Zeros of Gegenbauer and Hermite polynomials and connection coefficients, Math. comp. 73, No. 248, 1937-1951 (2004) · Zbl 1048.33007 · doi:10.1090/S0025-5718-04-01642-4
[2]Dette, H.; Studden, W. J.: Some new asymptotic properties for the zeros of Jacobi, Laguerre and Hermite polynomials, Constr. approx. 11, No. 2, 227-238 (1995) · Zbl 0898.41003 · doi:10.1007/BF01203416
[3]Dimitrov, D. K.: On a conjecture concerning monotonicity of zeros of ultraspherical polynomials, J. approx. Theory 85, 88-97 (1996) · Zbl 0857.33007 · doi:10.1006/jath.1996.0030
[4]Dimitrov, D. K.; Rodrigues, R. O.: On the behaviour of zeros of Jacobi polynomials, J. approx. Theory 149, 15-29 (2007)
[5]Elbert, À.: Some recent results on the zeros of Bessel functions and orthogonal polynomials, J. comput. Appl. math. 133, 65-83 (2001) · Zbl 0989.33004 · doi:10.1016/S0377-0427(00)00635-X
[6]Elbert, À.; Laforgia, A.; Siafarikas, P.: A conjecture on the zeros of ultraspherical polynomials, J. comput. Appl. math. 133, 684 (2001)
[7]Elbert, A.; Muldoon, M. E.: On the derivative with respect to a parameter of a zero of a Sturm–Liouville function, SIAM J. Math. anal. 25, 354-364 (1994) · Zbl 0798.34039 · doi:10.1137/S0036141092228878
[8]Foster, W. H.; Krasikov, I.: Inequalities for real-root polynomials and entire functions, Adv. appl. Math. 29, 102-114 (2002) · Zbl 1018.33007 · doi:10.1016/S0196-8858(02)00005-2
[9]Ismail, M. E. H.: The variation of zeros of certain orthogonal polynomials, Adv. in appl. Math. 8, 111-118 (1987) · Zbl 0628.33001 · doi:10.1016/0196-8858(87)90009-1
[10]Ismail, M. E. H.: Monotonicity of zeros of orthogonal polynomials, Q-series and partitions, 177-190 (1989) · Zbl 0698.33008
[11]Ismail, M. E. H.; Li, X.: Bounds on the extreme zeros of orthogonal polynomials, Proc. amer. Math. soc. 115, 131-140 (1992) · Zbl 0744.33005 · doi:10.2307/2159575
[12]Ismail, M. E. H.; Muldoon, M. E.: A discrete approach to monotonicity of zeros of orthogonal polynomials, Trans. amer.. Math. soc. 323, 65-78 (1991) · Zbl 0718.33004 · doi:10.2307/2001616
[13]Krasikov, I.: On the zeros of polynomials and allied functions satisfying second order differential equation, East. J. Approx. 9, 51-65 (2003) · Zbl 1110.33002
[14]Love, J. B.: Problem E 1532, Amer. math. Monthly 69, 668 (1962)
[15]Markov, A.: Sur LES racines de certaines équations (second note), Math. ann. 27, 177-182 (1886)
[16]Moak, D. S.; Saff, E. B.; Varga, R. S.: On the zeros of Jacobi polynomials pn(αn,βn)(x), Trans. amer. Math. soc. 249, 159-162 (1979) · Zbl 0414.33009 · doi:10.2307/1998916
[17]Muldoon, M. E.: Properties of zeros of orthogonal polynomials and related functions, J. comput. Appl. math. 48, 167-186 (1993) · Zbl 0796.33005 · doi:10.1016/0377-0427(93)90321-2
[18]Nikolov, G.: Inequalities of fuffin-Schaeffer type, II, East J. Approx. 11, 147-168 (2005) · Zbl 1141.41002
[19]Nikolov, G.: Polynomial inequalities of Markov and Duffin-Schaeffer type, Constructive theory of functions. Varna 2005, 201-246 (2006)
[20]Nikolov, G.; Uluchev, R.: Inequalities for real-root polynomials. Proof of a conjecture of foster and krasikov, Approximation theory: A volume dedicated to B. Bojanov, 201-216 (2004)
[21]Obreshkov, N.: On some algebraic covariants and the zeros of polynomials, Izv. inst. Mat. acad. Bulgare sci. 7, 89-126 (1963)
[22]Obreshkov, N.: Zeros of polynomials, Bulgarian Academic monographs 7 (2003)
[23]Stieltjes, T. J.: Sur LES racines de l’equation xn=0, Acta math. 9, 385-400 (1886)
[24]Szego, G.: Orthogonal polynomials, Amer. math. Soc. coll. Publ. 23 (1975) · Zbl 0089.27501