zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A projection method for solving nonlinear problems in reflexive Banach spaces. (English) Zbl 1206.47043
Summary: We study the convergence of an iterative algorithm for finding common fixed points of finitely many Bregman firmly nonexpansive operators in reflexive Banach spaces. Our algorithm is based on the concept of the so-called shrinking projection method and it takes into account possible computational errors. We establish a strong convergence theorem and then apply it to the solution of convex feasibility and equilibrium problems, and to finding zeroes of two different classes of nonlinear mappings.
47H05Monotone operators (with respect to duality) and generalizations
47H09Mappings defined by “shrinking” properties
47H10Fixed point theorems for nonlinear operators on topological linear spaces
47J25Iterative procedures (nonlinear operator equations)
90C25Convex programming
[1]Ambrosetti A., Prodi G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993)
[2]Bauschke H.H., Borwein J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996) · Zbl 0865.47039 · doi:10.1137/S0036144593251710
[3]Bauschke H.H., Borwein J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4, 27–67 (1997)
[4]Bauschke H.H., Borwein J.M., Combettes P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001) · Zbl 1032.49025 · doi:10.1142/S0219199701000524
[5]Bauschke H.H., Borwein J.M., Combettes P.L.: Bregman monotone optimization algorithms. SIAM J. Control Optim. 42, 596–636 (2003) · Zbl 1049.90053 · doi:10.1137/S0363012902407120
[6]Bauschke H.H., Combettes P.L.: Construction of best Bregman approximations in reflexive Banach spaces. Proc. Amer. Math. Soc. 131, 3757–3766 (2003) · Zbl 1040.41016 · doi:10.1090/S0002-9939-03-07050-3
[7]Blum E., Oettli W.: From optimization and variational inequalities to equilibrium problems. Math. Student 63, 123–145 (1994)
[8]Bonnans J.F., Shapiro A.: Perturbation Analysis of Optimization Problems. Springer-Verlag, New York (2000)
[9]Bregman L.M.: The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. and Math. Phys. 7, 200–217 (1967) · doi:10.1016/0041-5553(67)90040-7
[10]Bruck R.E.: Nonexpansive projections on subsets of Banach spaces. Pacific J. Math. 47, 341–355 (1973)
[11]Bruck R.E., Reich S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)
[12]Butnariu D., Censor Y., Reich S.: Iterative averaging of entropic projections for solving stochastic convex feasibility problems. Comput. Optim. Appl. 8, 21–39 (1997) · Zbl 0880.90106 · doi:10.1023/A:1008654413997
[13]Butnariu D., Iusem A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization. Kluwer Academic Publishers, Dordrecht (2000)
[14]Butnariu D., Kassay G.: A proximal-projection method for finding zeros of set-valued operators. SIAM J. Control Optim. 47, 2096–2136 (2008) · Zbl 1208.90133 · doi:10.1137/070682071
[15]D. Butnariu and E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. 2006 (2006), Art. ID 84919, 1–39.
[16]Censor Y., Lent A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981) · Zbl 0431.49042 · doi:10.1007/BF00934676
[17]Combettes P.L., Hirstoaga S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)
[18]Goebel K., Reich S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)
[19]Kopecká E., Reich S.: Asymptotic behavior of resolvents of coaccretive operators in the Hilbert ball. Nonlinear Anal. 70, 3187–3194 (2009) · Zbl 1166.47050 · doi:10.1016/j.na.2008.04.023
[20]Levenshtein M., Reich S.: Approximating fixed points of holomorphic mappings in the Hilbert ball. Nonlinear Anal. 70, 4145–4150 (2009) · Zbl 1176.58004 · doi:10.1016/j.na.2008.09.001
[21]Reich S.: Extension problems for accretive sets in Banach spaces. J. Funct. Anal. 26, 378–395 (1977) · Zbl 0378.47037 · doi:10.1016/0022-1236(77)90022-2
[22]Reich S.: A limit theorem for projections. Linear Multilinear Algebra 13, 281–290 (1983) · Zbl 0523.47040 · doi:10.1080/03081088308817526
[23]S. Reich, A weak convergence theorem for the alternating method with Bregman distances. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lect. Notes Pure Appl. Math. 178, Marcel Dekker, New York, 1996, 313–318.
[24]Reich S., Sabach S.: A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces. J. Nonlinear Convex Anal. 10, 471–485 (2009)
[25]Reich S., Sabach S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31, 22–44 (2010) · Zbl 1200.47085 · doi:10.1080/01630560903499852
[26]S. Reich and S. Sabach, Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, to appear.
[27]Reich S., Sabach S.: Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces. Nonlinear Anal. 73, 122–135 (2010) · Zbl 1226.47089 · doi:10.1016/j.na.2010.03.005
[28]Resmerita E.: On total convexity, Bregman projections and stability in Banach spaces. J. Convex Anal. 11, 1–16 (2004)
[29]Rockafellar R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[30]Takahashi W., Takeuchi Y., Kubota R.: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 341, 276–286 (2008) · Zbl 1134.47052 · doi:10.1016/j.jmaa.2007.09.062