zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the stability of a finite-difference scheme for nonlocal parabolic boundary-value problems. (English) Zbl 1206.65219
Summary: We deal with the stability analysis of difference schemes for a one-dimensional parabolic equation subject to integral conditions. It is based on the spectral structure of the transition matrix of the difference scheme. The stability domain is defined by using the hyperbola which is the locus of points where the transition matrix has trivial eigenvalues. The stability conditions obtained are much more general compared with those known in the literature. We analyze three separate cases of nonlocal integral conditions and solve an example illustrating the efficiency of the technique.
MSC:
65M12Stability and convergence of numerical methods (IVP of PDE)
35K05Heat equation
65M06Finite difference methods (IVP of PDE)
References:
[1]K.E. Atkinson, Introduction to Numerical Analysis, John Wiley & Sons, New York, 1978.
[2]B.I. Bandyrskii, I. Lazurchak, V.L. Makarov, and M. Sapagovas, Eigenvalue problem for the second order differential equation with nonlocal conditions, Nonlin. Anal. Model. Control, 11(1):13–32, 2006.
[3]N. Borovykh, Stability in the numerical solution of the heat equation with nonlocal boundary conditions, Appl. Numer. Math., 42:17–27, 2002. · Zbl 1003.65102 · doi:10.1016/S0168-9274(01)00139-8
[4]B. Cahlon, D.M. Kulkarni, and P. Shi, Stepwise stability for the heat equation with a nonlocal constrain, SIAM J. Numer. Anal., 32(2):571–593, 1995. · Zbl 0831.65094 · doi:10.1137/0732025
[5]R. Čiegis, A. Štikonas, O. Štikonienė, and O. Suboč, A monotonic finite-diference scheme for a parabolic problem with nonlocal conditions, Differ. Equ., 38(7):1027–1037, 2002. · Zbl 1030.65092 · doi:10.1023/A:1021167932414
[6]R. Čiupaila, Ž. Jesevičiūtė, and M. Sapagovas, On the eigenvalue problem for one-dimensional differential operator with nonlocal integral condition, Nonlinear Anal. Model. Control, 9(2):109–116, 2004.
[7]G. Ekolin, Finite difference methods for a nonlocal boundary value problem for heat equation, BIT, 31:245–261, 1991. · Zbl 0738.65074 · doi:10.1007/BF01931285
[8]G. Fairweather and J.C. Lopez-Marcos, Galerkin methods for a semilinear parabolic problem with nonlocal conditions, Adv. Comput. Math., 6:243–262, 1996. · Zbl 0868.65068 · doi:10.1007/BF02127706
[9]S.K. Godunov and V.S. Ryabenjkii, Difference Schemes Introduction to the Theory, Moscow, Nauka, 1977 (in Russian).
[10]A.V. Gulin, N.I. Ionkin, and V.A. Morozova, Stability of a nonlocal two-dimensional finite-difference problem, Differ. Equ., 37(7):970–978, 2001. · Zbl 1004.65091 · doi:10.1023/A:1011961822115
[11]A.V. Gulin, N.I. Ionkin, and V.A. Morozova, Stability criterion of difference schemes for the heat conduction equation with nonlocal boundary conditions, Comput. Methods Appl. Math., 6(1):31–55, 2006.
[12]A.V. Gulin, N.I. Ionkin, and V.A. Morozova, Study of the norm in stability problems for nonlocal difference schemes, Differ. Equ., 42(7):974–984, 2006. · Zbl 1126.65082 · doi:10.1134/S0012266106070068
[13]A.V. Gulin and V.A. Morozova, On the stability of nonlocal finite-difference boundary value problem, Differ. Equ., 39(7):962–967, 2003. · Zbl 1063.65090 · doi:10.1023/B:DIEQ.0000009192.30909.13
[14]Y. Liu, Numerical solution of the heat equation with nonlocal boundary conditions, J. Comput. Appl. Math., 110(1):115–127, 1999. · Zbl 0936.65096 · doi:10.1016/S0377-0427(99)00200-9
[15]S. Pečiulytė, O. Štikonienė, and A. Štikonas, Sturm-Liouville problem for stationary differential operator with nonlocal integral boundary conditions, Nonlin. Anal. Model. Control, 11(1):47–78, 2006.
[16]R.D. Richtmyer and K.W. Marton, Difference Methods for Initial-Value Problems, Second Edition, John Wiley & Sons, 1967.
[17]A.A. Samarskii, The Theory of Difference Schemes, Moscow, Nauka, 1977 (in Russian); Marcel Dekker, Inc., New York and Basel, 2001.
[18]A.A. Samarskii and A.V. Gulin, Numerical Methods, Moscow, Nauka, 1989 (in Russian).
[19]M.P. Sapagovas, The eigenvalue of some problems with a nonlocal condition, Differ. Equ., 38(7):1020–1026, 2002. · Zbl 1072.65119 · doi:10.1023/A:1021115915575
[20]M.P. Sapagovas, On stability of finite-difference schemes for one-dimensional parabolic equations subject to integral condition, Zh. Obchysl. Prykl. Mat., 92:70–90, 2005.
[21]M.P. Sapagovas and A.D. Štikonas, On the structure of the spectrum of a differential operator with a nonlocal condition, Differ. Equ., 41(7):1010–1018, 2005. · Zbl 1246.35139 · doi:10.1007/s10625-005-0242-y
[22]A. Štikonas, The Sturm-Liouville problem with a nonlocal boundary condition, Lith. Math. J., 47(3):336–351, 2007. · Zbl 1266.34042 · doi:10.1007/s10986-007-0023-9