zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Galerkin finite element approximation of symmetric space-fractional partial differential equations. (English) Zbl 1206.65234
The paper deals with the numerical approximation of space-fractional PDE with Riesz fractional derivatives by the Galerkin FEM. The well-posedness of its weak solution and the corresponding fully discrete scheme are proved. A detailed stability and convergence analysis of the implicit Galerkin finite element fully discrete system is carried out. Three numerical examples are given.
MSC:
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
References:
[1]Anh, V. V.; Leonenko, N. N.: Spectral analysis of fractional kinetic equations with random data, J. stat. Phys. 104, 1349-1387 (2001) · Zbl 1034.82044 · doi:10.1023/A:1010474332598
[2]Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M.: Application of a fractional advection – dispersion equation, Water resour. Res. 36, 1403-1412 (2000)
[3]Brenner, S.; Scott, L.: The mathematical theory of finite element methods, (1994)
[4]Chen, Chang-Ming; Liu, F.; Turner, I.; Anh, V.: A Fourier analysis method for the fractional diffusion equation describing sub-diffusion, J. comput. Phys. 227, 886-897 (2007) · Zbl 1165.65053 · doi:10.1016/j.jcp.2007.05.012
[5]Ervin, V. J.; Roop, J. P.: Variational formulation for the stationary fractional advection dispersion equation, Numer. meth. Part. D. E. 22, 558-576 (2006) · Zbl 1095.65118 · doi:10.1002/num.20112
[6]Fix, G. J.; Roop, J. P.: Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. math. Appl. 48, 1017-1033 (2004) · Zbl 1069.65094 · doi:10.1016/j.camwa.2004.10.003
[7]Heywood, J. G.; Rannacher, R.: Finite element approximation of the nonstationary Navier – Stokes problem, SIAM J. Numer. anal. 2, 353-384 (1990) · Zbl 0694.76014 · doi:10.1137/0727022
[8]Leonenko, G. M.; Phillips, T. N.: On the solution of the Fokker – Planck equation using a high-order reduced basis approximation, Comp. method. Appl. M. 199, 158-168 (2009) · Zbl 1231.76197 · doi:10.1016/j.cma.2009.09.028
[9]Lions, J. -L.; Magenes, E.: Problémes aux limites non homog ènes et applications, Problémes aux limites non homog ènes et applications 1 (1968) · Zbl 0165.10801
[10]F. Liu, V. Anh and I. Turner, Numerical solution of the fractional – order advection – dispersion equation, Proc. International Conference on Boundary and Interior Layers, Computational and Asymptotic Methods, Perth, Australia, 2002, 159 – 164.
[11]Liu, F.; Anh, V.; Turner, I.: Numerical solution of space fractional Fokker – Planck equation, J. comput. Appl. math. 166, 209-219 (2004) · Zbl 1036.82019 · doi:10.1016/j.cam.2003.09.028
[12]Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K.: Stability and convergence of the difference methods for the space – time fractional advection – diffusion equation, Appl. math. Comput., No. 191, 12-20 (2007) · Zbl 1193.76093 · doi:10.1016/j.amc.2006.08.162
[13]Liu, Q.; Liu, F.; Turner, I.; Anh, V.: Approximation of the L évy – Feller advection – dispersion process by random walk and finite difference method, J. phys. Comput. 222, 57-70 (2007) · Zbl 1112.65006 · doi:10.1016/j.jcp.2006.06.005
[14]Meerschaert, M. M.; Tadjeran, C.: Finite difference approximations for fractional advection – dispersion flow equations, J. comput. Appl. math. 172, 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[15]Metzler, R.; Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. rep. 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[16]Muslih, S. I.; Agrawal, O. P.: Riesz fractional derivatives and fractional dimensional space, Int. J. Theor. phys., 1-6 (2009)
[17]Picozzi, S.; West, B.: Fractional Langevin model of memory in financial markets, Phys. rev. E 66, 046118 (2002)
[18]Podlubny, I.: Fractional differential equations, (1999)
[19]Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Jara, B. M. V.: Matrix approach to discrete fractional calculus II: Partial fractional differential equations, J. comput. Phys. 228, 3137-3153 (2009) · Zbl 1160.65308 · doi:10.1016/j.jcp.2009.01.014
[20]Quarteroni, A.; Valli, A.: Numerical approximation of partial differential equations, (1997)
[21]J.P. Roop, Variational solution of the fractional advection – dispersion equation, the Graduate School of Clemson University, 2004.
[22]Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications (Translation from the russian), (1993) · Zbl 0818.26003
[23]Saxena, R. K.; Mathai, A. M.; Haubold, H. J.: On generalized fractional kinetic equations, Physica A 344, 657-664 (2004)
[24]Shen, S.; Liu, F.; Anh, V.; Turner, I.: The fundamental solution and numerical solution of the Riesz fractional advection – dispersion equation, IMA J. Appl. math. 73, 850-872 (2008) · Zbl 1179.37073 · doi:10.1093/imamat/hxn033
[25]Yosida, K.: Functional analysis, (1974)
[26]Yuste, S. B.; Lindenberg, K.: Subdiffusion-limited A+A reactions, Phys. rev. Lett. 87, 118301 (2001)
[27]Yuste, S. B.; Acedo, L.; Lindenberg, K.: Reaction front in an A+B C reaction-subdiffusion process, Phys. rev. E 69, 036126 (2004)
[28]G.M. Zaslavsky, Topological Aspects of the Dynamics of Fluids Plasmas, Dordrecht, 1992.
[29]Zaslavsky, G. M.: Chaos, fractional kinetics, and anomalous transport, Phys. rep. 371, 461-580 (2002) · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
[30]Zhuang, P.; Liu, F.; Anh, V.; Turner, I.: New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation, SIAM J. Numer. anal. 46, 1079-1095 (2008) · Zbl 1173.26006 · doi:10.1137/060673114