zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Differential evolution in constrained numerical optimization: an empirical study. (English) Zbl 1206.90226
Summary: Motivated by the recent success of diverse approaches based on differential evolution (DE) to solve constrained numerical optimization problems, in this paper, the performance of this novel evolutionary algorithm is evaluated. Three experiments are designed to study the behavior of different DE variants on a set of benchmark problems by using different performance measures proposed in the specialized literature. The first experiment analyzes the behavior of four DE variants in 24 test functions considering dimensionality and the type of constraints of the problem. The second experiment presents a more in-depth analysis on two DE variants by varying two parameters (the scale factor and the population size), which control the convergence of the algorithm. From the results obtained, a simple but competitive combination of two DE variants is proposed and compared against state-of-the-art DE-based algorithms for constrained optimization in the third experiment. The study in this paper shows (1) important information about the behavior of DE in constrained search spaces and (2) the role of this knowledge in the correct combination of variants, based on their capabilities, to generate simple but competitive approaches.
MSC:
90C59Approximation methods and heuristics
65K05Mathematical programming (numerical methods)
References:
[1]Barbosa, H. J.; Lemonge, A. C.: A new adaptive penalty scheme for genetic algorithms, Information sciences 156, No. 3 – 4, 215-251 (2003)
[2]Bernardino, H. S.; Barbosa, H. J. C.; Lemonge, A. C. C.; Fonseca, L. G.: A new hybrid AIS-GA for constrained optimization problems in mechanical engineering, , 1455-1462 (2008)
[3]Brest, J.; Zumer, V.; Maucec, M. S.: Self-adaptive differential evolution algorithm in constrained real-parameter optimization, , 919-926 (2006)
[4]Cagnina, L.; Esquivel, S.; Coello, C. A. Coello: A bi-population PSO with a shake-mechanism for solving constrained numerical optimization, , 670-676 (2007)
[5]Coello, C. A. Coello: Use of a self-adaptive penalty approach for engineering optimization problems, Computers in industry 41, No. 2, 113-127 (2000)
[6]Coello, C. A. Coello: Theoretical and numerical constraint handling techniques used with evolutionary algorithms: a survey of the state of the art, Computer methods in applied mechanics and engineering 191, No. 11 – 12, 1245-1287 (2002) · Zbl 1026.74056 · doi:10.1016/S0045-7825(01)00323-1 · doi:http://www.elsevier.com/gej-ng/10/14/62/45/36/35/abstract.html
[7]Conover, W.: Practical nonparametric statistics, (1999)
[8]Cruz-Cortés, N.: Handling constraints in global optimization using artificial immune systems, Studies in computational intelligence series 198, 237-262 (2009)
[9]Daniel, W.: Biostatistics: basic concepts and methodology for the health sciences, (2002)
[10]Deb, K.: Optimization for engineering design, (1995)
[11]Deb, K.: An efficient constraint handling method for genetic algorithms, Computer methods in applied mechanics and engineering 186, No. 2 – 4, 311-338 (2000) · Zbl 1028.90533 · doi:10.1016/S0045-7825(99)00389-8
[12]Eiben, A.; Smith, J. E.: Introduction to evolutionary computing, natural computing series, (2003)
[13]Eiben, G.; Schut, M.: New ways to calibrate evolutionary algorithms, Advances in metaheuristics for hard optimization, natural computing, 153-177 (2008) · Zbl 1211.90303
[14]Gämperle, R.; Muller, S.; Koumoutsakos, P.: A parameter study for differential evolution, , 293-298 (2002)
[15]Gong, W.; Cai, Z.: A multiobjective differential evolution algorithm for constrained optimization, , 181-188 (2008)
[16]Hamida, S. B.; Schoenauer, M.: ASCHEA: new results using adaptive segregational constraint handling, Proceedings of the congress on evolutionary computation 2002 (CEC’2002) 1, 884-889 (2002)
[17]He, Q.; Wang, L.; Huang, F. Z.: Nonlinear constrained optimization by enhanced co-evolutionary PSO, , 83-89 (2008)
[18]Ho, P. Y.; Shimizu, K.: Evolutionary constrained optimization using an addition of ranking method and a percentage-based tolerance value adjustment scheme, Information sciences 177, No. 14 – 15, 2985-3004 (2007)
[19]Huang, F.; Wang, L.; He, Q.: An effective co-evolutionary differential evolution for constrained optimization, Applied mathematics and computation 186, No. 1, 340-356 (2007) · Zbl 1114.65061 · doi:10.1016/j.amc.2006.07.105
[20]Huang, F. Z.; Wang, L.; He, Q.: A hybrid differential evolution with double populations for constrained optimization, , 18-25 (2008)
[21]Huang, V. L.; Qin, A. K.; Suganthan, P. N.: Self-adaptive differential evolution algorithm for constrained real-parameter optimization, , 324-331 (2006)
[22]Kukkonen, S.; Lampinen, J.: Constrained real-parameter optimization with generalized differential evolution, , 911-918 (2006)
[23]Kumar-Singh, H.; Ray, T.; Smith, W.: C-PSA: constrained Pareto simulated annealing for constrained multi-objective optimization, Information sciences 180, No. 13, 2499-2513 (2010)
[24]Lampinen, J.: A constraint handling approach for the differential evolution algorithm, Proceedings of the congress on evolutionary computation 2002 (CEC’2002) 2, 1468-1473 (2002)
[25]Becerra, R. Landa; Coello, C. A. Coello: Cultured differential evolution for constrained optimization, Computer methods in applied mechanics and engineering 195, No. 33 – 36, 4303-4322 (2006) · Zbl 1123.74039 · doi:10.1016/j.cma.2005.09.006
[26]Leguizamón, G.; Coello, C. A. Coello: A boundary search based ACO algorithm coupled with stochastic ranking, , 165-172 (2007)
[27]Li, L. D.; Li, X.; Yu, X.: A multi-objective constraint-handling method with PSO algorithm for constrained engineering optimization problems, , 1528-1535 (2008)
[28]J.J. Liang, T. Runarsson, E. Mezura-Montes, M. Clerc, P. Suganthan, C.A. Coello Coello, K. Deb, Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization, Technical Report, Nanyang Technological University, Singapore, December, 2005.
[29]Lin, Y. C.; Hwang, K. S.; Wang, F. S.: Hybrid differential evolution with multiplier updating method for nonlinear constrained optimization problems, Proceedings of the congress on evolutionary computation 2002 (CEC’2002) 1, 872-877 (2002)
[30]Liu, B.; Ma, H.; Zhang, X.; Liu, B.; Zhou, Y.: A memetic co-evolutionary differential evolution algorithm for constrained optimization, , 2996-3002 (2007)
[31]Liu, H.; Cai, Z.; Wang, Y.: A new constrained optimization evolutionary algorithm by using good point set, , 1247-1254 (2007)
[32]Liu, J.; Lampinen, J.: A fuzzy adaptive differential evolution algorithm, Soft computing 9, No. 6, 448-462 (2005) · Zbl 1076.93513 · doi:10.1007/s00500-004-0363-x
[33]Mallipeddi, R.; Mallipeddi, S.; Suganthan, P.: Ensemble strategies with adaptive evolutionary programming, Information sciences 180, No. 9, 1571-1581 (2010)
[34], Studies in computational intelligence 198 (2009)
[35]Mezura-Montes, E.; Coello, C. A. Coello: Identifying on-line behavior and some sources of difficulty in two competitive approaches for constrained optimization, 2005 IEEE congress on evolutionary computation (CEC’2005) 2, 1477-1484 (2005)
[36]Mezura-Montes, E.; Coello, C. A. Coello: A simple multimembered evolution strategy to solve constrained optimization problems, IEEE transactions on evolutionary computation 9, No. 1, 1-17 (2005)
[37]Mezura-Montes, E.; Coello, C. A. Coello: Constrained optimization via multiobjective evolutionary algorithms, Multiobjective problems solving from nature: from concepts to applications, natural computing series, 53-76 (2008)
[38]Mezura-Montes, E.; Coello, C. A. Coello; Tun-Morales, E. I.: Simple feasibility rules and differential evolution for constrained optimization, Lecture notes in artificial intelligence 2972, 707-716 (2004)
[39]Mezura-Montes, E.; Flores-Mendoza, J. I.: Improved particle swarm optimization in constrained numerical search spaces, Studies in computational intelligence series 193, 299-332 (2009)
[40]Mezura-Montes, E.; López-Ramírez, B. C.: Comparing bio-inspired algorithms in constrained optimization problems, , 662-669 (2007)
[41]E. Mezura-Montes, M.E. Miranda-Varela, R. del Carmen Gómez-Ramón, Additional Results of the Empirical Study on Differential Evolution in Constrained Numerical Optimization, Technical Report TR-EMM-01-2010, LANIA Educational Center, April, 2010. Available at: lt;http://www.lania.mx/sim;emezura/tr-EMM-01-2010.pdfgt;.
[42]Mezura-Montes, E.; Palomeque-Ortiz, A. G.: Parameter control in differential evolution for constrained optimization, , 1375-1382 (2009)
[43]Mezura-Montes, E.; Velázquez-Reyes, J.; Coello, C. A. C.: Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization, Proceedings of the genetic and evolutionary computation conference (GECCO’2005), Washington DC, USA 1, 225-232 (2005)
[44]E. Mezura-Montes, J. Velázquez-Reyes, C.A. Coello Coello, Comparing differential evolution models for global optimization, in: 2006 Genetic and Evolutionary Computation Conference (GECCO’2006), vol. 1, pp. 485 – 492.
[45]Mezura-Montes, E.; Velázquez-Reyes, J.; Coello, C. A. Coello: Modified differential evolution for constrained optimization, , 332-339 (2006)
[46]Michalewicz, Z.; Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems, Evolutionary computation 4, No. 1, 1-32 (1996)
[47]Muñoz-Zavala, A. E.; Hernández-Aguirre, A.; Villa-Diharce, E. R.; Botello-Rionda, S.: PESO+ for constrained optimization, , 935-942 (2006)
[48]Oyama, A.; Shimoyama, K.; Fujii, K.: New constraint-handling method for multi-objective and multi-constraint evolutionary optimization, Transactions of the Japan society for aeronautical and space sciences 50, No. 167, 56-62 (2007)
[49]Oyman, A. I.; Deb, K.; Beyer, H. G.: An alternative constraint handling method for evolution strategies, Proceedings of the congress on evolutionary computation 1999 (CEC’99) 1, 612-619 (1999)
[50]Price, K.; Storn, R.; Lampinen, J.: Differential evolution: A practical approach to global optimization, natural computing series, (2005)
[51]Price, K. V.; Rönkkönen, J. I.: Comparing the uni-modal scaling performance of global and local selection in a mutation-only differential evolution algorithm, , 7387-7394 (2006)
[52]Runarsson, T. P.; Yao, X.: Stochastic ranking for constrained evolutionary optimization, IEEE transactions on evolutionary computation 4, No. 3, 284-294 (2000)
[53]Smith, A. E.; Coit, D. W.: Constraint handling techniques — penalty functions, Handbook of evolutionary computation (1997)
[54]Takahama, T.; Sakai, S.: Constrained optimization by the &z.epsi; constrained differential evolution with gradient-based mutation and feasible elites, , 308-315 (2006)
[55]Takahama, T.; Sakai, S.: Constrained optimization by &z.epsi; constrained differential evolution with dynamic &z.epsi;-level control, Advances in differential evolution, 139-154 (2008)
[56]Takahama, T.; Sakai, T.: Solving difficult constrained optimization problems by the &z.epsi; constrained differential evolution with gradient-based mutation, Studies in computational intelligence series 198, 51-72 (2009)
[57]Tasgetiren, M. F.; Suganthan, P. N.: A multi-populated differential evolution algorithm for solving constrained optimization problems, , 340-354 (2006)
[58]Tessema, B.; Yen, G. G.: A self-adaptive penalty function based algorithm for constrained optimization, , 950-957 (2006)
[59]Ullah, A. S. S.M.B.; Sarker, R.; Cornforth, D.; Lokan, C.: An agent-based memetic algorithm (AMA) for solving constrained optimization problems, , 999-1006 (2007)
[60]Wah, B. W.; Wang, T.; Shang, Y.; Wu, Z.: Improving the performance of weighted Lagrange-multiplier methods for nonlinear constrained optimization, Information sciences 124, No. 1 – 4, 241-272 (2000) · Zbl 0961.90112 · doi:10.1016/S0020-0255(99)00081-X
[61]Wang, Y.; Cai, Z.; Guo, G.; Zhou, Y.: Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems, IEEE transactions on systems, man and cybernetics part B – cybernetics 37, No. 3, 560-575 (2007)
[62]Wang, Y.; Cai, Z.; Zhou, Y.; Fan, Z.: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique, Structural and multidisciplinary optimization 37, No. 4, 395-413 (2009)
[63]Wang, Y.; Cai, Z.; Zhou, Y.; Zeng, W.: An adaptive tradeoff model for constrained evolutionary optimization, IEEE transactions on evolutionary computation 12, No. 1, 80-92 (2008)
[64]Wang, Y.; Liu, H.; Cai, Z.; Zhou, Y.: An orthogonal design based constrained evolutionary optimization algorithm, Engineering optimization 39, No. 6, 715-736 (2007)
[65]Wanner, E. F.; Guimaraes, F. G.; Takahashi, R. H. C.; Flemming, P. J.: Local search with quadratic approximation in genetic algorithms for expensive optimization problems, , 677-683 (2007)
[66]Wolpert, D. H.; Macready, W. G.: No free lunch theorems for optimization, IEEE transactions on evolutionary computation 1, No. 1, 67-82 (1997)
[67]Xiao, J.; Xu, J.; Shao, Z.; Jiang, C.; Pan, L.: A genetic algorithm for solving multi-constrained function optimization problems based on ks function, , 4497-4501 (2007)
[68]Yu, Y.; Zhou, Z. H.: On the usefulness of infeasible solutions in evolutionary search: a theoretical study, , 835-840 (2008)
[69]Zeng, S.; Shi, H.; Li, H.; Chen, G.; Ding, L.; Kang, L.: A lower-dimensional-search evolutionary algorithm and its application in constrained optimization problem, , 1255-1260 (2007)
[70]Zhang, M.; Luo, W.; Wang, X.: Differential evolution with dynamic stochastic selection for constrained optimization, Information sciences 178, No. 15, 3043-3074 (2008)
[71]Zhang, Q.; Zeng, S.; Wang, R.; Shi, H.; Chen, G.; Ding, L.; Kang, L.: Constrained optimization by the evolutionary algorithm with lower dimensional crossover and gradient-based mutation, , 273-279 (2008)
[72]Zhou, Y.; He, J.: A runtime analysis of evolutionary algorithms for constrained optimization problems, IEEE transactions on evolutionary computation 11, No. 5, 608-619 (2007)
[73]Zielinski, K.; Laur, R.: Constrained single-objective optimization using differential evolution, , 927-934 (2006)
[74]Zielinski, K.; Laur, R.: Stopping criteria for differential evolution in constrained single-objective optimization, Advances in differential evolution (2008)
[75]Zielinski, K.; Vudathu, S. P.; Laur, R.: Influence of different deviations allowed for equality constraints on particle swarm optimization and differential evolution, Nature inspired cooperative strategies for optimization, 249-259 (2008)
[76]Zielinski, K.; Wang, X.; Laur, R.: Comparison of adaptive approaches for differential evolution, Lecture notes in computer science 5199, 641-650 (2008)