zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the selection and meaning of variable order operators for dynamic modeling. (English) Zbl 1207.34011
Summary: We review the application of differential operators of noninteger order to the modeling of dynamic systems. We compare all the definitions of Variable Order (VO) operators recently proposed in literature and select the VO operator that has the desirable property of continuous transition between integer and non-integer order derivatives. We use the selected VO operator to connect the meaning of functional order to the dynamic properties of a viscoelastic oscillator. We conclude that the order of differentiation of a single VO operator that represents the dynamics of a viscoelastic oscillator in stationary motion is a normalized phase shift. The normalization constant is found by taking the difference between the order of the inertial term (2) and the order of the spring term (0) and dividing this difference by the angular phase shift between acceleration and position in radians (π), so that the normalization constant is simply 2/π.
MSC:
34A08Fractional differential equations
34C15Nonlinear oscillations, coupled oscillators (ODE)