zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Oscillation of second-order half-linear delay dynamic equations with damping on time scales. (English) Zbl 1207.34087
Summary: By using the generalized Riccati transformation and the inequality technique, we establish a few new oscillation criteria for certain second-order half-linear delay dynamic equations with damping on a time scale. Our results extend and improve some known results, but also unify the oscillation of the second-order half-linear delay differential equation with damping and the second-order half-linear delay difference equation with damping.
MSC:
34K11Oscillation theory of functional-differential equations
34N05Dynamic equations on time scales or measure chains
References:
[1]Hilger, S.: Analysis on measure chains–a unified approach to continuous and discrete calculus, Results math. 18, 18-56 (1990) · Zbl 0722.39001
[2]Agarwal, R. P.; Grace, S. R.; O’regan, D.: Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, (2002)
[3]Agarwal, R. P.; Bohner, M.; Grace, S. R.; O’regan, D.: Discrete oscillation theory, (2005)
[4]Bohner, M.; Peterson, A.: Dynamic equations on time scales: an introduction with applications, (2001)
[5]Bohner, M.; Peterson, A.: Advances in dynamic equations on time scales, (2003)
[6]Agarwal, R. P.; Bohner, M.; O’regan, D.; Peterson, A.: Dynamic equations on time scales: a survey, J. comput. Appl. math. 141, 1-26 (2002) · Zbl 1020.39008 · doi:10.1016/S0377-0427(01)00432-0
[7]Bohner, M.; Saker, S. H.: Oscillation of second order nonlinear dynamic equations on time scales, Rocky mountain J. Math. 34, 1239-1254 (2004) · Zbl 1075.34028 · doi:10.1216/rmjm/1181069797
[8]Erbe, L.: Oscillation criteria for second order linear equations on a time scale, Can. appl. Math. Q. 9, 345-375 (2001) · Zbl 1050.39024
[9]Erbe, L.; Peterson, A.; Rehák, P.: Comparison theorems for linear dynamic equations on time scales, J. math. Anal. appl. 275, 418-438 (2002) · Zbl 1034.34042 · doi:10.1016/S0022-247X(02)00390-6
[10]Sun, S.; Han, Z.; Zhang, C.: Oscillation of second order delay dynamic equations on time scales, J. appl. Math. comput. 30, 459-468 (2009) · Zbl 1180.34069 · doi:10.1007/s12190-008-0185-6
[11]Grace, S. R.; Agarwal, R. P.; Kaymakcalan, B.; Sae-Jie, W.: Oscillation theorems for second order nonlinear dynamic equations, J. appl. Math. comput. 32, 205-218 (2010) · Zbl 1198.34194 · doi:10.1007/s12190-009-0244-7
[12]Agarwal, R. P.; Bohner, M.; Saker, S. H.: Oscillation of second order delay dynamic equations, Can. appl. Math. Q. 13, 1-18 (2005) · Zbl 1126.39003
[13]Sahiner, Y.: Oscillation of second order delay differential equations on time scales, Nonlinear anal. TMA 63, 1073-1080 (2005) · Zbl 1224.34294 · doi:10.1016/j.na.2005.01.062
[14]Erbe, L.; Peterson, A.; Saker, S. H.: Oscillation criteria for second order nonlinear delay dynamic equations, J. math. Anal. appl. 333, 505-522 (2007) · Zbl 1125.34046 · doi:10.1016/j.jmaa.2006.10.055
[15]Erbe, L.; Hassan, T. S.; Peterson, A.: Oscillation criteria for nonlinear functional neutral dynamic equations on time scales, J. difference equ. Appl. 15, No. 11–12, 1097-1116 (2009) · Zbl 1193.34135 · doi:10.1080/10236190902785199
[16]Grace, S. R.; Bohner, M.; Agarwal, R. P.: On the oscillation of second-order half-linear dynamic equations, J. difference equ. Appl. 15, No. 5, 451-460 (2009) · Zbl 1170.34023 · doi:10.1080/10236190802125371 · doi:http://www.informaworld.com/smpp/./content~db=all~content=a910733572
[17]Hardy, G. H.; Littlewood, J. E.; Pólya, G.: Inequalities, (1988)
[18]Bohner, M.: Some oscillation criteria for first order delay dynamic equations, Far east J. Appl. math. 18, No. 3, 289-304 (2005) · Zbl 1080.39005