zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A hybrid quantum-inspired immune algorithm for multiobjective optimization. (English) Zbl 1207.65078

Summary: This study suggests a novel quantum immune algorithm for finding Pareto-optimal solutions to multiobjective optimization problems based on quantum computing and immune system. In the proposed algorithm, there are distinct characteristics as follows.

First, the encoding method is based on Q-bit representation, and thus a chaos-based approach is suggested to initialize the population. Second, a new chaos-based rotation gate and Q-gates are presented to perform mutation and improve the quality of the population, respectively. Finally, especially, a new truncation algorithm with similar individuals (TASI) is utilized to preserve the diversity of the population.

Also, a new selection operator is proposed to create the new population based on TASI. Simulation results on six standard problems (ZDT6, CP, SP, VNT, OSY and KIT) show the proposed algorithm is able to find a much better spread of solutions and has better convergence near the true Pareto-optimal front compared to the vector immune algorithm (VIS) and the elitist non-dominated sorting genetic system (NSGA-II).

65K05Mathematical programming (numerical methods)
90C29Multi-objective programming; goal programming
81P68Quantum computation
68Q12Quantum algorithms and complexity
[1]Deb, K.: Multi-objective optimization using evolutionary algorithms, (2001) · Zbl 0970.90091
[2]Coello, C. A. Coello; Lamont, G. B.; Van Veldhuizen, D. A.: Evolutionary algorithms for solving multi-objective problems, (2008)
[3]De Castro, L. N.; Timmis, J.: Artificial immune system: A new computational intelligence approach, (2002)
[4]Hart, E.; Timmis, J.: Application areas of AIS: the past, the present and the future, Appl. soft comput. 8, No. 1, 191-201 (2008)
[5]Coello, C. A.; Cortés, N. Cruz: An approach to solve multiobjective optimization problems based on an artificial immune system, First international conference on artificial immune Systems(ICARIS2002), 212-221 (2002)
[6]Luh, G. C.; Chueh, C. H.; Liu, W. W.: MOIA: multi-objective immune algorithm, Eng. optimiz. 35, No. 2, 143-164 (2003)
[7]Luh, G. C.; Chueh, C. H.; Liu, W. W.: Multi-objective optimal design of truss structure with immune algorithm, Comput. struct. 82, 829-844 (2004)
[8]Jiao, L.; Gong, M.; Shang, R.: Clonal selection with immune dominance and energy based multiobjective optimization, Lncs 3410, 474-489 (2005) · Zbl 1109.68610 · doi:10.1007/b106458
[9]Zhang, X.; Lu, B.; Gou, S.; Jiao, L.: Immune multiobjective optimization algorithm for unsupervised feature selection, In Proceedings of applications of evolutionary computing 39 (2006)
[10]Freschi, F.; Repetto, M.: VIS: an artificial immune network for multi-objective optimization, Eng. optimiz. 38, No. 8, 975-996 (2006)
[11]X.L. Wang, M. Mahfouf, ACSAMO: an adaptive multiobjective optimization algorithm using the clonal selection principle, in: Proceedings of Second European Symposium on Nature-inspired Smart Information Systems, Puerto de la Cruz, Tenerife, Spain, 2006.
[12]Zhang, Z. H.: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control, Appl. soft comput. 8, 959-971 (2008)
[13]Gao, J. Q.; Wang, L.: WBMOAIS: A novel artificial immune system for multiobjective, Comput. oper. Res. 37, No. 1, 50-61 (2010) · Zbl 1171.90518 · doi:10.1016/j.cor.2009.03.009
[14]Shor, P. W.: Algorithms for quantum computation: discrete logarithms and factoring., Proceedings of 35th annual symposium foundations of computer science (1994)
[15]Grover, L. K.: Quantum mechanical searching, , 2255-2261 (1999)
[16]Han, K. H.; Kim, J. H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimaization, IEEE trans. Evol. comput. 6, No. 6, 580-593 (2002)
[17]Han, K. H.; Kim, J. H.: Quantum-inspired evolutionary algorithms with a new termination criterion, H&z.epsiv; gate, and two-phase scheme, IEEE trans. Evol. comput. 8, No. 2, 156-169 (2004)
[18]Kim, Y.; Kim, J. H.; Han, K. H.: Quantum-inspired multiobjective evolutionary algorithm for multiobjective 0/1 knapsack problems, , 2601-2606 (2006)
[19]Li, B. B.; Wang, L.: A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling, IEEE trans. Evol. comput. 37, No. 3, 576-591 (2007)
[20]Li, P. C.; Li, S. Y.: Learning algorithm and application of quantum BP neural networks based on universial quantum gates, J. sys. Eng. electron. 19, No. 1, 167-174 (2008) · Zbl 1219.68133 · doi:10.1016/S1004-4132(08)60063-8
[21]Li, P. C.; Li, S. Y.: Quantum ant colony algorithm for continuous space optimization, Chinese J. Control theory appl. 25, No. 2, 237-241 (2008)
[22]Aguirre, A. H.; Rionda, S. Botello; Coello, C. A.: Handling constraints using multiobjective optimization concepts, Int. J. Numer. meth. Eng. 59, 1989-2017 (2004)
[23]Deb, K.; Pratap, A.; Agarwal, S.: A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE trans. Evol. comput. 6, No. 2, 182-197 (2002)
[24]J.R. Schott, Fault Tolerant Design Using Single and Multi-criteria Genetic Algorithms, Master’s Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Boston, MA, 1995.
[25]D.V. Veldhuizen, Multiobjective Evolutionary Algorithms: Classifications, Analyses and New Innovations, Phd Thesis, Air Force Institute of Technology, Dayton, OH, 1999.
[26]Zitzler, E.; Deb, K.; Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results, Evol. comput. 8, No. 2, 125-148 (2000)
[27]Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization, Evolutionary multiobjective optimization: theoretical advances and applications, 105-145 (2005) · Zbl 1078.90567
[28]Viennet, R.: Multicriteria optimization using a genetic algorithm for determining the Pareto set, Int. J. Sys. sci. 27, No. 2, 255-260 (1996) · Zbl 0844.90079 · doi:10.1080/00207729608929211
[29]Osyczka, A.; Kundu, S.: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm, Struct. optimiz. 10, 94-99 (1995)
[30]Kita, H.; Yabumoto, Y.; Mori, N.; Nishikawa, Y.: Multi-objective optimization by means of the thermodynamical genetic algorithm, Parallel problem solving from nature CPPSN IV, 504-512 (1996)
[31]Coello, C. A. Coello; Pulido, G. Toscano; Lechuga, M. Salazar: Handling multiple objectives with particle swarm optimization, IEEE trans. Evol. comput. 8, 256-279 (2004)