zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes. (English) Zbl 1207.78041

In the present paper it is proposed a mimetic finite difference method that extends the mimetic formulation to the numerical treatment of magnetostatic field problems. The approach developed in this paper uses degrees of freedom attached to the vertices and edges, and employs natural discrete operators that mimic the curl and the gradient operator of the differential setting.

Using the discrete curl and gradient operators and two suitable quadrature rules for the numerical discretization of volume integrals on the computational domain, the authors provide a numerical discretization of the div-curl variational formulation of magnetostatics. It is established the existence and uniqueness of the numerical solution by means of an argument that generalizes the concept of logically rectangular or cubic meshes by Hyman and Shashkov to the case of unstructured polyhedral meshes. In the final part of the present paper, the accuracy of the method is illustrated by numerically solving several problems.

78M20Finite difference methods (optics)
78A30Electro- and magnetostatics
[1]Aarnes, J. E.; Krogstad, S.; Lie, K. -A.: Multiscale mixed/mimetic methods on corner-point grids, Comput. geosci. (Special issue on multiscale methods) 12, 297-315 (2008)
[2]Da Veiga, L. Beirão: A residual based error estimator for the mimetic finite difference method, Numer. math. 108, No. 3, 387-406 (2008) · Zbl 1144.65067 · doi:10.1007/s00211-007-0126-6
[3]Da Veiga, L. Beirão: A mimetic finite difference method for linear elasticity, M2AN: math. Model. numer. Anal. 44, No. 2, 231-250 (2010)
[4]Da Veiga, L. Beirão; Lipnikov, K.; Manzini, G.: Convergence analysis of the high-order mimetic finite difference method, Numer. math. 113, No. 3, 325-356 (2009) · Zbl 1183.65132 · doi:10.1007/s00211-009-0234-6
[5]Da Veiga, L. Beirão; Manzini, G.: A higher-order formulation of the mimetic finite difference method, SIAM, J. Sci. comput. 31, No. 1, 732-760 (2008) · Zbl 1185.65201 · doi:10.1137/080717894
[6]Da Veiga, L. Beirão; Manzini, G.: An a-posteriori error estimator for the mimetic finite difference approximation of elliptic problems, Int. J. Numer. meth. Eng. 76, No. 11, 1696-1723 (2008) · Zbl 1195.65146 · doi:10.1002/nme.2377
[7]Bochev, P.; Hyman, J. M.: Principle of mimetic discretizations of differential operators, Proceedings of IMA hot topics workshop on compatible discretizations, IMA 142 (2006)
[8]Bossavit, A.: Whitney forms: a class of finite elements for three dimensional computation in electromagnetism, IEE proc. 135, 493-500 (1988)
[9]Brezzi, F.; Buffa, A.: Innovative mimetic discretizations for electromagnetic problems, J. comput. Appl. math. 234, No. 6, 1980-1987 (2010) · Zbl 1191.78056 · doi:10.1016/j.cam.2009.08.049
[10]Brezzi, F.; Buffa, A.; Lipnikov, K.: Mimetic finite differences for elliptic problems, M2AN: math. Model. numer. Anal. 43, 277-295 (2009) · Zbl 1177.65164 · doi:10.1051/m2an:2008046 · doi:http://www.esaim-m2an.org/articles/m2an/abs/2009/02/m2an0787/m2an0787.html
[11]Brezzi, F.; Fortin, M.: Mixed and hybrid finite element methods, (1991) · Zbl 0788.73002
[12]Brezzi, F.; Lipnikov, K.; Shashkov, M.: Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. anal. 43, 1872-1896 (2005) · Zbl 1108.65102 · doi:10.1137/040613950
[13]Brezzi, F.; Lipnikov, K.; Shashkov, M.; Simoncini, V.: A new discretization methodology for diffusion problems on generalized polyhedral meshes, Comput. methods appl. Mech. eng. 196, 3682-3692 (2007) · Zbl 1173.76370 · doi:10.1016/j.cma.2006.10.028
[14]Brezzi, F.; Lipnikov, K.; Simoncini, V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. models methods appl. Sci. 15, 1533-1553 (2005) · Zbl 1083.65099 · doi:10.1142/S0218202505000832
[15]Campbell, J. C.; Shashkov, M. J.: A tensor artificial viscosity using a mimetic finite difference algorithm, J. comput. Phys. 172, No. 2, 739-765 (2001) · Zbl 1002.76082 · doi:10.1006/jcph.2001.6856
[16]Cangiani, A.; Manzini, G.: Flux reconstruction and pressure post-processing in mimetic finite difference methods, Comput. methods appl. Mech. eng. 197, No. 9 – 12, 933-945 (2008) · Zbl 1169.76404 · doi:10.1016/j.cma.2007.09.019
[17]Cangiani, A.; Manzini, G.; Russo, A.: Convergence analysis of the mimetic finite difference method for elliptic problems, SIAM J. Numer. anal. 47, No. 4, 2612-2637 (2009) · Zbl 1204.65128 · doi:10.1137/080717560
[18]Ciarlet, P. G.: The finite element method for elliptic problems, (1978)
[19]Y. Coudière, F. Hubert, A 3D discrete duality finite volume method for non linear elliptic problem, in: A. Handlovicov, P. Frolkovic, K. Mikula, D. Sevcovic (Eds.), Proceedings of Algoritmy 2009, 2009, pp. 51 – 60. · Zbl 1171.65441
[20]Coudière, Y.; Manzini, G.: The discrete duality finite volume method for convection-diffusion problems, SIAM J. Numer. anal. 47, No. 6, 4163-4192 (2010) · Zbl 1210.65183 · doi:10.1137/080731219
[21]Delcourte, S.; Domelevo, K.; Omnes, P.: A discrete duality finite volume approach to Hodge decomposition and div – curl problems on almost arbitrary two-dimensional meshes, SIAM J. Numer. anal. 45, No. 3, 1142-1174 (2007) · Zbl 1152.65110 · doi:10.1137/060655031
[22]Droniou, J.; Eymard, R.: A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. math. 105, No. 1, 35-71 (2006) · Zbl 1109.65099 · doi:10.1007/s00211-006-0034-1
[23]Droniou, J.; Eymard, R.; Gallouët, T.; Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. models methods appl. Sci. (M3AS) 20, No. 2, 265-295 (2010) · Zbl 1191.65142 · doi:10.1142/S0218202510004222
[24]R. Eymard, T. Gallouët, R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general non-conforming meshes, SUSHI: a scheme using stabilisation and hybrid interfaces, 2009. doi:10.1093/imanum/drn084.
[25]Gradinaru, V.; Hiptmair, R.: Whitney elements on pyramids, Electron. trans. Numer. anal. 8, 154-168 (1999) · Zbl 0970.65120 · doi:emis:journals/ETNA/vol.8.1999/pp154-168.dir/pp154-168.html
[26]Gyrya, V.; Lipnikov, K.: High-order mimetic finite difference method for diffusion problems on polygonal meshes, J. comput. Phys. 227, 8841-8854 (2008) · Zbl 1152.65101 · doi:10.1016/j.jcp.2008.06.028
[27]Hermeline, F.: A finite volume method for approximating 3d diffusion operators on general meshes, J. comput. Phys. 228, No. 16, 5763-5786 (2009) · Zbl 1168.76340 · doi:10.1016/j.jcp.2009.05.002
[28]Hiptmair, R.: Discrete Hodge operators, Numer. math. 90, No. 2, 265-289 (2001) · Zbl 0993.65130 · doi:10.1007/s002110100295
[29]Hyman, J.; Shashkov, M.: Mimetic discretisations of Maxwell’s equations and the equations of magnetic diffusion, Prog. electromagnet. Res. 32, 89-121 (2001)
[30]Hyman, J. M.; Shashkov, M.: Adjoint operators for the natural discretizations of the divergence gradient and curl on logically rectangular grids, Appl. numer. Math. 25, No. 4, 413-442 (1997) · Zbl 1005.65024 · doi:10.1016/S0168-9274(97)00097-4
[31]Hyman, J. M.; Shashkov, M.: Natural discretizations of the divergence gradient and curl on logically rectangular grids, Comput. math. Appl. 33, No. 4, 81-104 (1997) · Zbl 0868.65006 · doi:10.1016/S0898-1221(97)00009-6
[32]Hyman, J. M.; Shashkov, M.: The orthogonal decomposition theorems for mimetic finite difference methods, SIAM J. Numer. anal. 36, No. 3, 788-818 (1999) · Zbl 0972.65077 · doi:10.1137/S0036142996314044
[33]Kuznetsov, Yu.; Repin, S.: New mixed finite element method on polygonal and polyhedral meshes, Russ. J. Numer. anal. Math. model. 18, No. 3, 261-278 (2003) · Zbl 1048.65113 · doi:10.1515/156939803322380846
[34]Landau, L. D.; Lifshitz, E. M.; Pitaevskii, L. P.: Electrodynamics of continuous media, (2004)
[35]Lyons, S. L.; Parashkevov, R. R.; Wu, X. H.: A family of H1-conforming finite element spaces for calculations on 3D grids with pinch-outs, Numer. linear algebra appl. 13, No. 9, 789-799 (2006) · Zbl 1174.65523 · doi:10.1002/nla.503
[36]Margolin, L.; Shashkov, M.; Smolarkiewicz, P.: A discrete operator calculus for finite difference approximations, Comput. methods appl. Mech. eng. 187, 365-383 (2000) · Zbl 0978.76063 · doi:10.1016/S0045-7825(00)80001-8
[37]Matiussi, C.: An analysis of finite volume, finite element, and finite difference methods using some concepts of algebraic topology, J. comput. Phys. 133, 289-309 (1997) · Zbl 0878.65091 · doi:10.1006/jcph.1997.5656
[38]Monk, P.: Finite element methods for Maxwell equations, (2003) · Zbl 1024.78009 · doi:10.1093/acprof:oso/9780198508885.001.0001
[39]Nédélec, J. -C.: A new family of mixed finite elements in R3, Numer. math. 50, No. 1, 57-81 (1986) · Zbl 0625.65107 · doi:10.1007/BF01389668
[40]Nicolaides, R. A.; Wang, D. -Q.: Convergence analysis of a covolume scheme for Maxwell’s equations in three dimensions, Math. comput. 67, No. 223, 947-963 (1998) · Zbl 0907.65116 · doi:10.1090/S0025-5718-98-00971-5
[41]Nicolaides, R. A.: Direct discretization of planar div – curl problems, SIAM J. Numer. anal. 29, No. 1, 32-56 (1992) · Zbl 0745.65063 · doi:10.1137/0729003
[42]Nicolaides, R. A.; Wu, X.: Covolume solutions of three-dimensional div – curl equations, SIAM J. Numer. anal. 34, No. 6, 2195-2203 (1997) · Zbl 0889.35006 · doi:10.1137/S0036142994277286
[43]Perot, J. B.; Subramanian, V.: Higher-order mimetic methods for unstructured meshes, J. comput. Phys. 219, No. 1, 68-85 (2006) · Zbl 1105.65101 · doi:10.1016/j.jcp.2006.03.028
[44]Shashkov, M.; Steinberg, S.: Solving diffusion equations with rough coefficients in rough grids, J. comput. Phys. 129, No. 2, 383-405 (1996) · Zbl 0874.65062 · doi:10.1006/jcph.1996.0257
[45]Sutherland, I. E.; Hodgman, G. W.: Reentrant polygon clipping, Commun. ACM 17, No. 1, 32-42 (1974) · Zbl 0271.68065 · doi:10.1145/360767.360802
[46]Tabarraei, A.; Sukumar, N.: Application of polygonal finite elements in linear elasticity, Int. J. Comput. methods 3, No. 4, 503-520 (2006) · Zbl 1198.74104 · doi:10.1142/S021987620600117X
[47]Tabarraei, A.; Sukumar, N.: Extended finite element method on polygonal and quadtree meshes, Comput. methods appl. Mech. eng. 197, No. 5, 425-438 (2007) · Zbl 1169.74634 · doi:10.1016/j.cma.2007.08.013
[48]Trapp, K. A.: Inner products in covolume and mimetic methods, M2AN: math. Model. numer. Anal. 42, 941-959 (2008) · Zbl 1155.65103 · doi:10.1051/m2an:2008030
[49]Yee, K. S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE T. Antenn. propag. 14, 302-307 (1966) · Zbl 1155.78304 · doi:10.1109/TAP.1966.1138693