zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust exponential stability and stabilizability of linear parameter dependent systems with delays. (English) Zbl 1207.93087
Summary: The robust exponential stability and stabilizability problems are addressed in this paper for a class of linear parameter dependent systems with interval time-varying and constant delays. In this paper, restrictions on the derivative of the time-varying delay is not required which allows the time-delay to be a fast time-varying function. Based on the Lyapunov-Krasovskii theory, we derive delay-dependent exponential stability and stabilizability conditions in terms of Linear Matrix Inequalities (LMIs) which can be solved by various available algorithms. Numerical examples are given to illustrate the effectiveness of our theoretical results.
MSC:
93D21Adaptive or robust stabilization
93D20Asymptotic stability of control systems
93C15Control systems governed by ODE
93C05Linear control systems
References:
[1]S. Bengea, R. DeCarlo, M. Corless, G. Rizzoni, A Polytopic System Approach for the Hybrid Control of a Diesel Engine Using VGT/EGR, ECE Technical Reports, Purdue University, IM, 2002, pp. 1 – 61.
[2]Cao, D. Q.; He, P.; Yhang, K. Y.: Exponential stability criteria of uncertain systems with multiple time delays, Journal of computational and applied mathematics 283, 274-362 (2003) · Zbl 1044.34030 · doi:10.1016/S0022-247X(02)00512-7
[3]Cauët, S.; Rambault, L.; Bachelier, O.; Mehdi, D.: Parameter-dependent Lyapunov functions applied to analysis of induction motor stability, Control engineering practice 10, 337-345 (2002)
[4]Chen, Y.; Xue, A.; Lu, R.; Zhou, S.: On robustly exponentially stability of uncertain neutral systems with time-varying delays and nonlinear perturbations, Nonlinear analysis 68, 2464-2470 (2008) · Zbl 1147.34352 · doi:10.1016/j.na.2007.01.070
[5]Chi, B. T.; Hua, M. G.: Robust passive control for uncertain discrete-time systems with time-varying delays, Chaos, solitons and fractals 29, 331-341 (2006) · Zbl 1147.93034 · doi:10.1016/j.chaos.2005.08.039
[6]Gao, H.; Lam, J.; Wang, C.: Mixed H2/H filtering for continuous-time polytopic systems: a parameter-dependent approach, Circuits systems signal processing 24, 689-702 (2005) · Zbl 1102.94033 · doi:10.1007/s00034-005-0612-y
[7]Geromel, J. C.; Colaneri, P.: Robust stability of time varying polytopic systems, Systems and control letters 55, 81-85 (2001) · Zbl 1129.93479 · doi:10.1016/j.sysconle.2004.11.016
[8]Grammel, G.; Maizurna, I.: Exponential stability of nonlinear differential equations in the presence of perturbations or delays, Communications in nonlinear science and numerical simulation 12, 869-875 (2007) · Zbl 1120.34039 · doi:10.1016/j.cnsns.2005.11.009
[9]Gu, K.; Kharitonov, V. L.; Chen, J.: Stability of time-delay system, (2003)
[10]Hale, J. K.; Lunel, S. M. Verduyn: Introduction to functional differential equations, (1993)
[11]He, Y.; Wang, Q. -G.; Zheng, W. -X.: Global robust stability for delayed neural networks with polytopic type uncertainties, Chaos, solitons and fractals 26, 1349-1354 (2005) · Zbl 1083.34535 · doi:10.1016/j.chaos.2005.04.005
[12]He, Y.; Wu, M.; She, J. -H.; Liu, G. -P.: Parameter-dependent Lyapunov functional for stability of time-delay system with polytopic-type uncertainties, IEEE transactions on automatic control 49, 828-832 (2004)
[13]Jiang, X.; Han, Q. -L.: Delay-dependent robust stability for uncertain linear systems with interval time-varying delay, Automatica 42, 1059-1065 (2006) · Zbl 1135.93024 · doi:10.1016/j.automatica.2006.02.019
[14]Jiang, M.; Shen, Y.; Liao, X.: On the global exponential stability for functional differential equations, Communications in nonlinear science and numerical simulation 10, 705-713 (2005) · Zbl 1070.35113 · doi:10.1016/j.cnsns.2004.05.002
[15]Liao, X.; Yang, J.; Guo, S.: Exponential stability of Cohen – Grossberg neural networks with delays, Communications in nonlinear science and numerical simulation 13, 1767-1775 (2008) · Zbl 1221.34144 · doi:10.1016/j.cnsns.2007.03.032
[16]Nam, P. T.; Phat, V. N.: Robust exponentially stability and stabilization of linear uncertain polytopic time-delay systems, Journal control theory and applications 6, No. 2, 163-170 (2008)
[17]Peng, C.; Tian, Y. -C.: Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay, Journal of computational and applied mathematics 214, 480-494 (2008) · Zbl 1136.93437 · doi:10.1016/j.cam.2007.03.009
[18]Phat, V. N.: Robust stability and stabilizability of uncertain linear hybrid system with state delays, IEEE transactions circuits system II 52, 94-98 (2005)
[19]Phat, V. N.; Niamsup, P.: Stability of linear time-varying delay systems and applications to control problems, Journal of computational and applied mathematics 194, 343-356 (2006) · Zbl 1161.34353 · doi:10.1016/j.cam.2005.07.021
[20]Wu, M.; Liu, F.; Shi, P.: Exponential stability analysis for neural networks with time-varying delay, IEEE transactions on systems, man and cybernetics 38, No. 4, 1152-1156 (2008)
[21]Xu, S.; Lam, J.; Ho, D. W. C.; Zou, Y.: Delay-dependent exponentially stability for a class of neural networks with time delays, Journal of computational and applied mathematics 183, 16-18 (2005)
[22]Yoneyama, J.: New delay-dependent approach to robust stability and stabilization for Takagi – sugeno fuzzy time-delay systems, Fuzzy and systems 158, 2225-2237 (2007) · Zbl 1122.93050 · doi:10.1016/j.fss.2007.03.022
[23]Zhao, W.: Global exponential stability analysis of Cohen – Grossberg neural network with delays, Communications in nonlinear science and numerical simulation 13, 847-856 (2008) · Zbl 1221.93207 · doi:10.1016/j.cnsns.2006.09.004