zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Formation of higher-dimensional topological black holes. (English) Zbl 1208.83071
Summary: We study higher-dimensional gravitational collapse to topological black holes in two steps. First, we construct some (n+2)-dimensional collapsing space-times, which include generalised Lemaître-Tolman-Bondi-like solutions, and we prove that these can be matched to static Λ-vacuum exterior space-times. We then investigate the global properties of the matched solutions which, besides black holes, may include the existence of naked singularities and wormholes. Second, we consider as interiors classes of 5-dimensional collapsing solutions built on Riemannian Bianchi IX spatial metrics matched to radiating exteriors given by the Bizoń-Chmaj-Schmidt metric. In some cases, the data at the boundary for the exterior can be chosen to be close to the data for the Schwarzschild solution.
83C57Black holes
83E15Kaluza-Klein and other higher-dimensional theories
83C75Space-time singularities, cosmic censorship, etc.
[1]Akbar M.M.: Classical boundary-value problem in Riemannian quantum gravity and Taub–Bolt-anti-de Sitter geometries. Nucl. Phys. B 663, 215–230 (2003) · Zbl 1028.83508 · doi:10.1016/S0550-3213(03)00376-6
[2]Birmingham D.: Topological black holes in anti-de Sitter space. Class. Quantum Grav. 16, 1197–1205 (1999) · Zbl 0933.83025 · doi:10.1088/0264-9381/16/4/009
[3]Bizoń P., Chmaj T., Schmidt B.G.: Critical behaviour in vacuum gravitational collapse in 4 + 1-dimensions. Phys. Rev. Lett. 95, 071102 (2005) · doi:10.1103/PhysRevLett.95.071102
[4]Bizoń P., Chmaj T., Rostworowski A., Schmidt B.G., Tabor Z.: Vacuum gravitational collapse in nine dimensions. Phys. Rev. D 72, 121502 (2005) · doi:10.1103/PhysRevD.72.121502
[5]Böhm C.: Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces. Invent. Math. 134, 145 (1998) · Zbl 0965.53033 · doi:10.1007/s002220050261
[6]Boutaleb-Joutei H.: The general Taub-NUT de Sitter metric as a self-dual Yang-Mills solution of gravity. Phys. Lett. B 90, 181–184 (1980) · doi:10.1016/0370-2693(80)90080-5
[7]Dafermos M., Holzegel G.: On the nonlinear stability of higher dimensional triaxial Bianchi-IX black holes. Adv. Theor. Math. Phys. 10, 503–523 (2006)
[8]Eguchi T., Hanson A.J.: Asymptotically flat self-dual solutions to Euclidean gravity. Phys. Lett. B 74, 249–251 (1978) · doi:10.1016/0370-2693(78)90566-X
[9]Galloway G.J.: A ’finite infinity’ version of topological censorship. Class. Quantum Grav. 13, 1471–1478 (1996) · Zbl 0853.53069 · doi:10.1088/0264-9381/13/6/015
[10]Ghosh S.G., Beesham A.: Higher dimensional inhomogeneous dust collapse and cosmic censorship. Phys. Rev. D 64, 124005 (2001) · doi:10.1103/PhysRevD.64.124005
[11]Gibbons G.W., Hartnoll S.A.: Gravitational instability in higher dimensions. Phys. Rev. D 66, 064024 (2002) · doi:10.1103/PhysRevD.66.064024
[12]Gibbons G.W., Ida D., Shiromizu T.: Uniqueness and non-uniqueness of static vacuum black holes in higher dimensions. Prog. Theor. Phys. Suppl. 148, 284–290 (2003) · doi:10.1143/PTPS.148.284
[13]Goswami R., Joshi P.: Cosmic censorship in higher dimensions. Phys. Rev. D 69, sss104002 (2004)
[14]Hellaby C.: A Kruskal-like model with finite density. Class. Quantum Grav. 4, 635–650 (1987) · Zbl 0635.53073 · doi:10.1088/0264-9381/4/3/021
[15]Holzegel, G.: Stability and decay-rates for the five-dimensional Schwarzschild metric under biaxial perturbations. Preprint, arXiv:0808.3246 (2008)
[16]Lemos J.P.S.: Gravitational collapse to toroidal, cylindrical and planar black holes. Phys. Rev. D 57, 4600–4605 (1998) · doi:10.1103/PhysRevD.57.4600
[17]Mena F.C., Natário J., Tod P.: Gravitational collapse to toroidal and higher genus asymptotically AdS black holes. Adv. Theor. Math. Phys. 12, 1163–1181 (2008)
[18]Pederson H.: Eguchi–Hanson metrics with a cosmological constant. Class. Quantum Grav. 2, 579–587 (1985) · Zbl 0575.53006 · doi:10.1088/0264-9381/2/4/022
[19]Smith W.L., Mann R.B.: Formation of topological black holes from gravitational collapse. Phys. Rev. D 56, 4942–4947 (1997) · doi:10.1103/PhysRevD.56.4942