zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An inventory model with generalized type demand, deterioration and backorder rates. (English) Zbl 1208.90007
Summary: This study is motivated by the paper of K. Skouri, I. Konstantaras, S. Papachristos and I. Ganas [Eur. J. Oper. Res. 192, No. 1, 79–92 (2009; Zbl 1171.90326)]. We extend their inventory model from ramp type demand rate and Weibull deterioration rate to arbitrary demand rate and arbitrary deterioration rate in the consideration of partial backorder. We demonstrate that the optimal solution is actually independent of demand. That is, for a finite time horizon, any attempt at tackling targeted inventory models under ramp type or any other types of the demand becomes redundant. Our analytical approach dramatically simplifies the solution procedure.
MSC:
90B05Inventory, storage, reservoirs
References:
[1]Abad, P. L.: Optimal pricing and lot-sizing under conditions of perishability and partial backordering, Management science 42, 1093-1104 (1996) · Zbl 0879.90069 · doi:10.1287/mnsc.42.8.1093
[2]Abad, P. L.: Optimal price and order size for a reseller under partial backordering, Computer and operations research 28, 53-65 (2001) · Zbl 0976.90001 · doi:10.1016/S0305-0548(99)00086-6
[3]Chu, P.; Yang, K. L.; Liang, S. K.; Niu, T.: Note on inventory model with a mixture of back orders and lost sales, European journal of operational research 159, 470-475 (2004) · Zbl 1065.90002 · doi:10.1016/S0377-2217(03)00416-8
[4]Dave, U.: A deterministic lot-size inventory model with shortages and a linear trend in demand, Naval research logistics 36, 507-514 (1989) · Zbl 0672.90037 · doi:10.1002/1520-6750(198908)36:4<507::AID-NAV3220360412>3.0.CO;2-N
[5]Deng, P. S.: Improved inventory models with ramp type demand and Weibull deterioration, International journal of information and management sciences 16, No. 4, 79-86 (2005) · Zbl 1103.90014
[6]Deng, P. S.; Lin, R.; Chu, P. Peter: A note on the inventory models for deteriorating items with ramp type demand rate, European journal of operational research 178, 112-120 (2007) · Zbl 1110.90006 · doi:10.1016/j.ejor.2006.01.028
[7]Dye, C. -Y.; Chang, H. -J.; Teng, J. -U.: A deteriorating inventory model with time-varying demand and shortage-dependent partial backlogging, European journal of operational research 1172, 417-429 (2005) · Zbl 1168.90328 · doi:10.1016/j.ejor.2004.10.025
[8]Giri, B. C.; Jalan, A. K.; Chaudhuri, K. S.: Economic order quantity model with Weibull deterioration distribution, shortage and ramp-type demand, International journal of systems science 34, No. 4, 237-243 (2003) · Zbl 1074.90505 · doi:10.1080/0020772131000158500
[9]Henery, R. J.: Inventory replenishment policy for increasing demand, Journal of the operational research society 30, 611-617 (1979) · Zbl 0424.90019 · doi:10.2307/3009379
[10]Hill, R. M.: Inventory models for increasing demand followed by level demand, Journal of the operational research society 46, No. 10, 250-1259 (1995) · Zbl 0843.90039
[11]Mandal, B.; Pal, A. K.: Order level inventory system with ramp type demand rate for deteriorating items, Journal of interdisciplinary mathematics 1, 49-66 (1998) · Zbl 0911.90142
[12]Manna, S. K.; Chaudhuri, K. S.: An EOQ model with ramp type demand rate, time dependent deterioration rate, unit production cost and shortages, European journal of operational research 171, No. 2, 557-566 (2006) · Zbl 1090.90068 · doi:10.1016/j.ejor.2004.08.041
[13]Padmanabhan, G.; Vrat, P.: Inventory model with a mixture of back orders and lost sales, International journal of system science 21, 1721-1726 (1990) · Zbl 0715.90038 · doi:10.1080/00207729008910488
[14]Panda, S.; Saha, S.; Basu, M.: An EOQ model with generalized ramp-type demand and Weibull distribution deterioration, Asia – Pacific journal of operational research 24, No. 1, 93-109 (2007) · Zbl 1137.90321 · doi:10.1142/S0217595907001152
[15]Panda, S.; Senapati, S.; Basu, M.: Optimal replenishment policy for perishable seasonal products in a season with ramp-type time dependent demand, Computers and industrial engineering 54, No. 2, 301-314 (2008)
[16]Papachristos, S.; Skouri, K.: An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type-backlogging, Operations research letters 27, 175-184 (2000) · Zbl 1096.90518 · doi:10.1016/S0167-6377(00)00044-4
[17]Resh, M.; Friedman, M.; Barbosa, L. C.: On a general solution of the deterministic lot size problem with time-proportional demand, Operations research 24, 718-725 (1976) · Zbl 0363.90044 · doi:10.1287/opre.24.4.718
[18]Sachan, R. S.: On policy inventory model for deteriorating items with time proportional demand, Journal of the operational research society 35, 1013-1019 (1984) · Zbl 0563.90035 · doi:10.2307/2582458
[19]Skouri, K.; Konstantaras, I.; Papachristos, S.; Ganas, I.: Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate, European journal of operational research 192, No. 1, 79-92 (2009) · Zbl 1171.90326 · doi:10.1016/j.ejor.2007.09.003
[20]Teng, J. T.: A deterministic replenishment model with linear trend in demand, Operations research letters 19, 33-41 (1996) · Zbl 0865.90038 · doi:10.1016/0167-6377(96)00010-7
[21]Teng, J. T.; Chang, H. J.; Dye, C. Y.; Hung, C. H.: An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging, Operations research letters 30, 387-393 (2002) · Zbl 1013.90006 · doi:10.1016/S0167-6377(02)00150-5
[22]Wee, H. M.: Joint pricing and replenishment policy for deteriorating inventory with declining market, International journal of production economics 40, 163-171 (1995)
[23]Wu, J. W.; Lin, C.; Tan, B.; Lee, W. C.: An EOQ model with ramp type demand rate for items with Weibull deterioration, International journal of information and management sciences 10, 41-51 (1999)
[24]Wu, K. S.; Ouyang, L. Y.: A replenishment policy for deteriorating items with ramp type demand rate, Proceeding of national science council ROC (A) 24, 279-286 (2000)
[25]Wu, K. S.: An EOQ inventory model for items with Weibull distribution deterioration, ramp type demand rate and partial backlogging, Production planning and control 12, 787-793 (2001)
[26]Wu, K. S.; Ouyang, L. Y.; Yang, C. T.: Retailer’s optimal ordering policy for deteriorating items with ramp-type demand under stock-dependent consumption rate, International journal of information and management sciences 19, 245-262 (2008) · Zbl 1152.90327 · doi:http://jims.ms.tku.edu.tw/mss/M19/M19N2/o19n24/index.html