zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A class of nonlocal impulsive problems for integrodifferential equations in Banach spaces. (English) Zbl 1209.34095

The paper deals with the nonlinear integrodifferential impulsive equation with nonlocal conditions

x ' (t)=Ax(t)+ft,x(t), 0 t k(t,s,x(s))ds,tJ=[0,b],tt i ,x(0)=g(x)+x 0 ,Δx(t i )=I i (x(t i )),i=1,2,,p,0=t 0 <t 1 <<t p <t p+1 =b,(P)

where A:D(A)XX is the generator of a strongly continuous semigroup {T(t),t0} on a Banach space X, f:J×X×XX, k:J×J×XX, g:PC(J,X)X and I i :XX, i=1,2,,p are given functions which satisfy some suitable assumptions, Δx(t i )=x(t i + )-x(t i - ), x(t i + )=lim h0 + x(t i +h) and x(t i - )=lim h0 - x(t i +h) are respectively the right and left limits of x(t) at t=t i . By using a generalization of the Ascoli-Arzela theorem and some fixed point theorems such as Schaefer’s fixed point theorem and Krasnosel’skii’s fixed point theorem, the authors study the existence and uniqueness of PC-mild solutions for problem (P).

34K30Functional-differential equations in abstract spaces
45J05Integro-ordinary differential equations
34K45Functional-differential equations with impulses
47N20Applications of operator theory to differential and integral equations
[1]Ahmed N.U.: Optimal impulsive control for impulsive systems in Banach space. Int. J. Differ. Equ. Appl. 1, 37–52 (2000)
[2]Ahmed N.U.: Some remarks on the dynamics of impulsive systems in Banach space. Math. Anal. 8, 261–274 (2001)
[3]Ahmed N.U., Teo K.L., Hou S.H.: Nonlinear impulsive systems on infinite dimensional spaces. Nonlinear Anal. 54, 907–925 (2003) · Zbl 1030.34056 · doi:10.1016/S0362-546X(03)00117-2
[4]Ahmed N.U.: Existence of optimal controls for a general class of impulsive systems on Banach space. SIAM J. Control Optimal 42, 669–685 (2003) · Zbl 1037.49036 · doi:10.1137/S0363012901391299
[5]Ahmed N.U.: Optimal feedback control for impulsive systems on the space of finitely additive measures. Publ. Math. Debrecen 70, 371–393 (2007)
[6]Benchohra M., Henderson J., Ntouyas S.K., Ouahab A.: Multiple solutions for impulsive semilinear functional and neutral functional differential equations in Hilbert space. J. Inequal. Appl. 2005, 189–205 (2005) · Zbl 1095.34046 · doi:10.1155/JIA.2005.189
[7]Byszewski L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494–505 (1991) · Zbl 0748.34040 · doi:10.1016/0022-247X(91)90164-U
[8]Byszewski L.: Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy problems. Dyn. Syst. Appl. 5, 595–605 (1996)
[9]Byszewski L., Akca H.: Existence of solutions of a semilinear functional differential evolution nonlocal problem. Nonlinear Anal. 34, 65–72 (1998) · Zbl 0934.34068 · doi:10.1016/S0362-546X(97)00693-7
[10]Byszewski L., Akca H.: On a mild solution of a semilinear functional-differential evolution nonlocal problem. J. Appl. Math. Stoch. Anal. 10, 265–271 (1997) · Zbl 1043.34504 · doi:10.1155/S1048953397000336
[11]Balachandran K., Park D.G., Kwun Y.C.: Nonlinear integrodifferential equations of Sobolev type with nonlocal conditions in Banach spaces. Commun. Korean Math. Soc. 14, 223–231 (1999)
[12]Balachandran K., Uchiyama K.: Existence of solutions of nonlinear integrodifferential equations of Sobolev type with nonlocal condition in Banach spaces. Proc. Indian Acad. Sci. (Math. Sci.) 110, 225–232 (2000) · Zbl 0957.34058 · doi:10.1007/BF02829493
[13]Balachandran K., Chandrasekaran M.: The nonlocal Cauchy problem for semilinear integrodifferential equation with devating argument. Proc. Edinburgh Math. Soc. 44, 63–70 (2001) · Zbl 0985.45010 · doi:10.1017/S0013091598001060
[14]Balachandran K., Kumar R.R.: Existence of solutions of integrodifferential evolution equations with time varying delays. Appl. Math. E Notes 7, 1–8 (2007)
[15]Bainov D.D., Simeonov P.S.: Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific and Technical Group. Limited, New York (1993)
[16]Lakshmikantham V., Bainov D.D., Simeonov P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore, London (1989)
[17]Lin Y., Liu J.H.: Semilinear integrodifferential equations with nonlocal Cauchy problem. Nonlinear Anal. 26, 1023–1033 (1996) · Zbl 0916.45014 · doi:10.1016/0362-546X(94)00141-0
[18]Liu J.H., Ezzinbi K.: Non-autonomous integrodifferential equations with nonlocal conditions. J. Integr. Equ. Appl. 15, 79–93 (2003) · Zbl 1044.45002 · doi:10.1216/jiea/1181074946
[19]Liang J., Liu J.H., Xiao T.-J.: Nonlocal Cauchy problems governed by compact operator families. Nonlinear Anal. 57, 183–189 (2004) · Zbl 1083.34045 · doi:10.1016/j.na.2004.02.007
[20]Liu J.: Nonlinear impulsive evolution equations. Dyn. Contin. Discrete Impuls. Syst. 6, 77–85 (1999)
[21]Liang J., Liu J.H., Xiao T.-J.: Nonlocal problems for integrodifferential equations. Dyn. Contin. Discrete Impuls. Syst. 15, 815–824 (2008)
[22]Liang J., Liu J.H., Xiao T.-J.: Nonlocal impulsive problems for nonlinear differential equations in Banach spaces. Math. Comput. Model. 49, 798–804 (2009) · Zbl 1173.34048 · doi:10.1016/j.mcm.2008.05.046
[23]Mophou G.M.: Existence and uniqueness of mild solution to impulsive fractional differential equations. Nonlinear Anal. 72, 1604–1615 (2010) · Zbl 1187.34108 · doi:10.1016/j.na.2009.08.046
[24]Krasnoselskii M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, New York (1964)
[25]Schaefer H.: Über die methode der priori Schranhen. Math. Ann. 129, 415–416 (1955) · Zbl 0064.35703 · doi:10.1007/BF01362380
[26]Wang, J., Xiang, X., Wei, W., Chen, Q.: The generalized Gronwall inequality and its application to periodic solutions of integrodifferential impulsive periodic system on Banach space. J. Inequal. Appl. 2008, Article ID 430521, 22 p. (2008)
[27]Wang, J., Xiang, X., Wei, W.: Existence of periodic solutions for integrodifferential impulsive periodic system on Banach space. Abstract Appl. Anal. 2008, Article ID 939062, 19 p. (2008)
[28]Wang J., Xiang X., Wei W.: Periodic solutions of a class of integrodifferential impulsive periodic systems with time-varying generating operators on Banach space. Electr. J. Qual. Theory Differ. Equ. 4, 1–17 (2009)
[29]Wang, J., Xiang, X., Wei, W.: A class of nonlinear integrodifferential impulsive periodic systems of mixed type and optimal controls on Banach space. J. Appl. Math. Comput (in press). doi: 10.1007/s12190-009-0332-8
[30]Wei W., Xiang X., Peng Y.: Nonlinear impulsive integro-differential equation of mixed type and optimal controls. Optimization 55, 141–156 (2006) · Zbl 1101.45002 · doi:10.1080/02331930500530401
[31]Xiang X., Wei W.: Mild solution for a class of nonlinear impulsive evolution inclusion on Banach space. Southeast Asian Bull. Math. 30, 367–376 (2006)
[32]Xiang X., Wei W., Jiang Y.: Strongly nonlinear impulsive system and necessary conditions of optimality. Dyn. Cont. Discrete Impuls. Syst. A Math. Anal. 12, 811–824 (2005)
[33]Yu X.L., Xiang X., Wei W.: Solution bundle for class of impulsive differential inclusions on Banach spaces. J. Math. Anal. Appl. 327, 220–232 (2007) · Zbl 1113.34046 · doi:10.1016/j.jmaa.2006.03.075
[34]Yang T.: Impulsive control theory. Springer, Berlin (2001)