zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamical behavior of computer virus on internet. (English) Zbl 1209.68139
Summary: We presented a computer virus model using an SIRS model and the threshold value R 0 determining whether the disease dies out is obtained. If R 0 is less than one, the disease-free equilibrium is globally asymptotically stable. By using the time delay as a bifurcation parameter, the local stability and Hopf bifurcation for the endemic state is investigated. Numerical results demonstrate that the system has periodic solution when time delay is larger than a critical values. The obtained results may provide some new insight to prevent the computer virus.
68M11Internet topics
[1]Aron, J. L.; O’leary, M.; Gove, R. A.; Azadegan, S.; Schneider, M. C.: The benefits of a notification process in addressing the worsening computer virus problem: results of a survey and a simulation model, Computers and security 21, 142-163 (2002)
[2]Billings, L.; Spears, W. M.; Schwartz, I. B.: A unified prediction of computer virus spread in connected networks, Physics letters A 297, 261-266 (2002) · Zbl 0995.68007 · doi:10.1016/S0375-9601(02)00152-4
[3]Bissett, A.: Some human dimensions of computer virus creation and infection, International journal of human-computer studies 52, 899-913 (2000)
[4]Cohen, F.: Computer viruses: theory and experiments, Computers and security 6, 22-35 (1987)
[5]Goldberg, L. A.; Goldberg, P. W.; Phillips, C. A.; Sorkin, G. B.: Constructing computer virus phylogenies, Journal of algorithms 26, 188-208 (1998) · Zbl 0891.68045 · doi:10.1006/jagm.1997.0897
[6]Jiang, Guirong; Yang, Qigui: Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vaccination, Applied mathematics and computation 215, 1035-1046 (2009) · Zbl 1172.92031 · doi:10.1016/j.amc.2009.06.032
[7]Kafai, Y. B.: Understanding virtual epidemics: children’s folk conceptions of a computer virus, Journal of science education and technology 6, 523-529 (2009)
[8]J. Kephart, S. White, Directed-graph epidemiological models of computer viruses, in: 1991 IEEE Symposium on Security and Privacy, 1991, pp. 343 – 359.
[9]J. Kephart, S. White, Measuring and modeling computer virus prevalence, in: 1993 IEEE Symposium on Security and Privacy, 1993, pp. 2 – 15.
[10]J.O. Kephart, S.R. White, Measuring and modeling computer virus prevalence, in: 1993 IEEE Computer Society Symposium On Research In Security and Privacy: Proceedings, 1993, pp. 2 – 15.
[11]Kuang, Y.: Delay differential equations with applications in population dynamics, Mathematics in science and engineering 191 (1993) · Zbl 0777.34002
[12]Li, T.: Dynamic detection for computer virus based on immune system, Science in China series F-information sciences 51, 1475-1486 (2008) · Zbl 1210.94091 · doi:10.1007/s11432-008-0125-y
[13]Makinen, E.: Comment on ’A framework for modelling trojans and computer virus infection’, Computer journal 44, 321-323 (2004) · Zbl 1051.68539 · doi:10.1093/comjnl/44.4.321
[14]Mishra, B.; Jha, N.: Fixed period of temporary immunity after run of anti-malicious software on computer nodes, Applied mathematics and computation 190, 1207-1212 (2007) · Zbl 1117.92052 · doi:10.1016/j.amc.2007.02.004
[15]Nachenberg, C.: Computer virus-coevolution, Communications of the ACM 40, 46-51 (1997)
[16]Perdisci, R.; Lanzi, A.; Lee, W.: Classification of packed executables for accurate computer virus detection, Pattern recognition letters 29, 1941-1946 (2008)
[17]Sawyer, J. E.; Kernan, M. C.; Conlon, D. E.; Garland, H.: Responses to the michelangelo computer virus threat: the role of information sources and risk homeostasis theory, Journal of applied social psychology 29, 23-51 (1999)
[18]Shi, Ruiqing; Jiang, Xiaowu; Chen, Lansun: The effect of impulsive vaccination on an SIR epidemic model, Applied mathematics and computation 212, 305-311 (2009) · Zbl 1186.92040 · doi:10.1016/j.amc.2009.02.017
[19]Stroud, Phillip D.; Sydoriak, Stephen J.; Riese, Jane M.; Smith, James P.; Mniszewski, Susan M.; Romero, Phillip R.: Semi-empirical power-law scaling of new infection rate to model epidemic dynamics with inhomogeneous mixing, Mathematical biosciences 203, 301-318 (2006) · Zbl 1101.92045 · doi:10.1016/j.mbs.2006.01.007
[20]Thimbleby, H.; Anderson, S.; Cairns, P.: A framework for modelling trojans and computer virus infection, Computer journal 41, 444-458 (1998) · Zbl 0929.68017 · doi:10.1093/comjnl/41.7.444
[21]Wierman, J. C.; Marchette, D. J.: Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction, Computational statistics and data analysis 45, 3-23 (2004)