zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hopf bifurcation in a three-species system with delays. (English) Zbl 1209.92058
Summary: A kind of three-species system with Holling II functional response and two delays is introduced. Its local stability and the existence of Hopf bifurcation are demonstrated by analyzing the associated characteristic equation. By using the normal form method and center manifold theorem, explicit formulas to determine the direction of the Hopf bifurcation and the stability of bifurcating periodic solution are also obtained. In addition, the global existence results of periodic solutions bifurcating from Hopf bifurcations are established by using a global Hopf bifurcation result. Numerical simulation results are also given to support our theoretical predictions.
34K18Bifurcation theory of functional differential equations
34K13Periodic solutions of functional differential equations
34K20Stability theory of functional-differential equations
65C60Computational problems in statistics
[1]Ruan, S.G., Ardito, A., Ricciardi, P., DeAngelis, D.L.: Coexistence in competing models with density-dependent mortality. C. R. Biol. 330, 845–854 (2007) · doi:10.1016/j.crvi.2007.10.004
[2]Yang, Y.: Hopf bifurcation in a two-predator, one-prey system with time delay. Appl. Math. Comput. 214, 228–235 (2009) · Zbl 1181.34090 · doi:10.1016/j.amc.2009.03.078
[3]Yan, X.P., Zhang, C.H.: Hopf bifurcation in a delayed Lokta-Volterra predator-prey system. Nonlinear Anal., Real World Appl. 9, 114–127 (2008) · Zbl 1149.34048 · doi:10.1016/j.nonrwa.2006.09.007
[4]Li, W.L., Wang, L.S.: Stability and bifuractation of a delayed three-level food chain model with Beddington-DeAngelis functional response. Nonlinear Anal. Real World Appl. (2008). doi: 10.1016/j.nonrwa.2008.05.004
[5]Zhang, C.H., Li, W.T., Yan, X.P.: Hopf bifurcation in a predator-prey system with multiple delays. Chaos Solitons Fractals 42, 1273–1285 (2009) · Zbl 1198.34143 · doi:10.1016/j.chaos.2009.03.075
[6]Kuang, Y.: Delay Differential Equations with Application in Population Dynamics. Academic Press, New York (1993)
[7]Gao, S.J., Chen, L.S., Teng, Z.D.: Hopf bifurcation and global stability for a delayed predator-prey system with stage structure for predator. Appl. Math. Comput. 202, 721–729 (1993) · Zbl 1151.34067 · doi:10.1016/j.amc.2008.03.011
[8]Xu, R., Ma, Z.E.: Stability and Hopf bifurcation in a ratio-dependent predator-prey system with stage structure. Chaos Solitons Fractals 38, 669–684 (2008) · Zbl 1146.34323 · doi:10.1016/j.chaos.2007.01.019
[9]Sun, X.K., Huo, H.F., Xiang, H.: Bifurcation and stability analysis in predator-prey model with a stage-structure for predator. Nonlinear Dyn. 58, 497–513 (2009) · Zbl 1183.92085 · doi:10.1007/s11071-009-9495-y
[10]Ruan, S.G., Wei, J.J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A, Math. Anal. 10, 863–874 (2003)
[11]Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)
[12]Wu, J.H.: Symmetric functional differential equations and neural networks with memory. Trans. Am. Math. Soc. 350, 4799–4838 (1998) · Zbl 0905.34034 · doi:10.1090/S0002-9947-98-02083-2
[13]Ruan, R.G.: Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays. Q. Appl. Math. 1, 159–173 (2001)
[14]Hale, J.: Theory of Functional Differential Equations. Springer, New York (1977)
[15]Song, Y.L., Han, M.A., Wei, J.J.: Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays. Physica D 200, 185–204 (2005) · Zbl 1062.34079 · doi:10.1016/j.physd.2004.10.010
[16]Li, X.L., Wei, J.J.: On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays. Chaos Solitons Fractals 26, 519–526 (2005) · Zbl 1098.37070 · doi:10.1016/j.chaos.2005.01.019
[17]Zhang, T.L., Jiang, H.J., Teng, Z.D.: On the distribution of the roots of a fifth degree exponential polynomial with application to a delayed neural network model. Neurocomputing 72, 1098–1104 (2009) · Zbl 05718908 · doi:10.1016/j.neucom.2008.03.003