zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Passivity-based control for Hopfield neural networks using convex representation. (English) Zbl 1209.93056
Summary: This paper considers the problem of passivity-based controller design for Hopfield neural networks. By making use of a convex representation of nonlinearities, a feedback control scheme based on passivity and Lyapunov theory is presented. A criterion for existence of the controller is given in terms of Linear Matrix Inequality (LMI), which can be easily solved by a convex optimization problem. An example and its numerical simulation are given to show the effectiveness of the proposed method.
MSC:
93B51Design techniques in systems theory
93B52Feedback control
93D05Lyapunov and other classical stabilities of control systems
92B20General theory of neural networks (mathematical biology)
References:
[1]Kelly, D. G.: Stability in contractive nonlinear neural networks, IEEE trans. Biomed. eng. 3, 231-242 (1990)
[2]Matsouka, K.: Stability conditions for nonlinear continuous neural networks with asypmmetric connections weights, Neural networks 5, 495-500 (1992)
[3]Xu, S.; Lam, J.; Ho, D. W. C.; Zou, Y.: Global robust exponential stability analysis for interval recurrent neural networks, Phys. lett. A 325, 124-133 (2004) · Zbl 1161.93335 · doi:10.1016/j.physleta.2004.03.038
[4]Sanchez, E. N.; Perez, J. P.: Input-to-state stability (ISS) analysis for dynamic neural networks, IEEE trans. Circuits syst. I 46, 1395-1398 (1999) · Zbl 0956.68133 · doi:10.1109/81.802844
[5]Chu, T.; Zhang, C.; Zhang, Z.: New necessary and sufficient condition for absolute stability of normal neural networks, Neural networks 16, 1223-1227 (2003)
[6]Liao, X.; Chen, G.; Sanchez, E. N.: LMI-based approach for asypmtotically stability analysis of delayed neural networks, IEEE trans. Circuits syst. I. 49, 1033-1039 (2002)
[7]Mou, S. S.; Gao, H. J.; Lam, J.; Qiang, W.: A new criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay, Neural networks 19, 532-535 (2008)
[8]Li, T.; Guo, L.; Wu, L.; Sun, C.: Delay-dependent robust stability criteria for delay neural networks with linear fractional uncertainties, Int. J. Control autom. Syst. 7, 281-288 (2009)
[9]Singh, V.: Modified criteria for global robust stability of interval delayed neural networks, Appl. math. Comput. 215, 3124-3133 (2009) · Zbl 1189.34147 · doi:10.1016/j.amc.2009.10.006
[10]Zhang, B.; Xu, S.; Zou, Y.: Improved delay-dependent exponential stability criteria for discrete-time recurrent neural networks with time-varying delays, Neurocomputing 72, 321-330 (2008)
[11]Cho, H. J.; Park, J. H.: Novel delay-dependent robust stability criterion of delayed cellular neural networks, Chaos, solitons fract. 32, 1194-1200 (2007) · Zbl 1127.93352 · doi:10.1016/j.chaos.2005.11.040
[12]Xu, S.; Lam, J.; Ho, D. W. C.: Delay-dependent asymptotic stability of neural networks with time-varying delays, Int. J. Bifurcation chaos 18, 245-250 (2008) · Zbl 1156.34058 · doi:10.1142/S0218127408020276
[13]Qiu, J. Q.; Yang, H. J.; Zhang, J. H.; Gao, Z. F.: New robust stability criteria for uncertain neural networks with interval time-varying delays, Chaos, solitons fract. 39, 579-585 (2009) · Zbl 1197.34141 · doi:10.1016/j.chaos.2007.01.087
[14]Yang, R. N.; Gao, H. J.; Shi, P.: Novel robust stability criteria for stochastic Hopfield neural networks with time delays, IEEE trans. Syst. man cybern. Part B: cybern. 39, 467-474 (2009)
[15]Park, Ju. H.; Kwon, O. M.; Lee, S. M.: LMI optimization approach on stability for delayed neural networks of neutral-type, Appl. math. Comput. 196, 236-244 (2008) · Zbl 1157.34056 · doi:10.1016/j.amc.2007.05.047
[16]Kemih, K.; Filali, S.; Benslama, M.; Kimouche, M.: Passivity-based control of chaotic Lü system, Int. J. Innovat. comput. Inform. control 2, 331-337 (2006)
[17]Wang, F.; Liu, C.: Synchronization of unified chaotic system based on passive control, Physica D 225, 55-60 (2007) · Zbl 1119.34332 · doi:10.1016/j.physd.2006.09.038
[18]Song, Q.; Liang, J.; Wang, Z.: Passivity analysis of discrete-time stochastic neural networks with time-varying delays, Neurocomputing 72, 1782-1788 (2009)
[19]Lou, X.; Cui, B.: Passivity analysis of integro-differential neural networks with time-varying delays, Neurocomputing 70, 1071-1078 (2007)
[20]Li, C.; Liao, X.: Passivity analysis of neural networks with time delay, IEEE trans. Circuits syst., II 52, 471-475 (2005)
[21]Xu, S.; Zheng, W. X.; Zou, Y.: Passivity analysis of neural networks with time-varying delays, IEEE trans. Circuits syst., II 56, 325-329 (2009)
[22]Das, P. K.; Schieve, W. C.; Zeng, Z.: Chaos in an effective four-neuron neural network, Phys. lett. A 161, 60-66 (1991)