zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A novel active pinning control for synchronization and anti-synchronization of new uncertain unified chaotic systems. (English) Zbl 1209.93071
Summary: This paper discusses the synchronization and anti-synchronization of new Uncertain Unified Chaotic Systems (UUCS). Based on the idea of active control, a novel active pinning control strategy is presented, which only needs a state of new UUCS. The proposed controller can achieve synchronization between a response system and a drive system, and ensure the synchronized robust stability of new UUCS. Numerical simulations of new UUCS show that the controller can make that chaotic systems achieve synchronization or anti-synchronization in a quite short period and both are of good robust stability.
93C15Control systems governed by ODE
93C10Nonlinear control systems
93D09Robust stability of control systems
93D15Stabilization of systems by feedback
34H10Chaos control (ODE)
[1]Lorenz, E.N.: Deterministic non-periodic flows. J. Atmos. Sci. 20, 130–141 (1963) · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[2]Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(2), 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[3]Pecora, L., Carroll, T.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(2), 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[4]Chen, S., Wang, F., Wang, C.: Synchronizing strict-feedback and general strict-feedback chaotic systems via a single controller. Chaos Solitons Fractals 20(2), 235–243 (2004) · Zbl 1052.37061 · doi:10.1016/S0960-0779(03)00370-9
[5]Chen, M., Han, Z.: Controlling and synchronizing chaotic Genesio system via nonlinear feedback control. Chaos Solitons Fractals 17(4), 709–716 (2003) · Zbl 1044.93026 · doi:10.1016/S0960-0779(02)00487-3
[6]Wang, Y., Guan, Z., Wen, X.: Adaptive synchronization for Chen chaotic system with fully unknown parameters. Chaos Solitons Fractals 19(4), 899–903 (2004) · Zbl 1053.37528 · doi:10.1016/S0960-0779(03)00256-X
[7]Li, C., Liao, X., Zhang, X.: Impulsive synchronization of chaotic systems. Chaos 15, 023104 (2005). doi: 10.1063/1.1899823
[8]Li, G.: Generalized projective synchronization of two chaotic systems by using active control. Chaos Solitons Fractals 30(1), 77–82 (2006) · Zbl 1144.37372 · doi:10.1016/j.chaos.2005.08.130
[9]Li, G., Zhou, S., Yang, K.: Generalized projective synchronization between two different chaotic systems using active backstepping control. Phys. Lett. A 355(4), 326–330 (2006) · doi:10.1016/j.physleta.2006.02.049
[10]Tan, X., Zhang, J., Yang, Y.: Synchronizing chaotic systems using backstepping design. Chaos Solitons Fractals 16(1), 37–45 (2003) · Zbl 1035.34025 · doi:10.1016/S0960-0779(02)00153-4
[11]Chen, S., Yang, Q., Wang, C.: Impulsive control and synchronization of unified chaotic system. Chaos Solitons Fractals 20(4), 751–758 (2004) · Zbl 1050.93051 · doi:10.1016/j.chaos.2003.08.008
[12]Chen, M., Han, Z.: Controlling and synchronizing chaotic Genesio system via nonlinear feedback control. Chaos Solitons Fractals 17(4), 709–716 (2003) · Zbl 1044.93026 · doi:10.1016/S0960-0779(02)00487-3
[13]Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45(2), 429–435 (2009) · Zbl 1158.93308 · doi:10.1016/j.automatica.2008.07.016
[14]Vaněček, A., Čelikovský, S.: Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice–Hall, London (1996)
[15]Li, Z., Chen, G., Halang, W.A.: Homoclinic and heteroclinic orbits in a modified Lorenz system. Inf. Sci. 165, 235–245 (2004) · Zbl 1057.37019 · doi:10.1016/j.ins.2003.06.005
[16]Lü, J., Zhou, T., Zhang, S.: Controlling the Chen attractor using linear feedback based on parameter identification. Chin. Phys. 11(1), 12–16 (2002) · doi:10.1088/1009-1963/11/1/304
[17]Feng, J., Xu, C., Tang, J.: Controlling Chen’s chaotic attractor using two different techniques based on parameter identification. Chaos Solitons Fractals 32, 1413–1418 (2007) · Zbl 1129.37317 · doi:10.1016/j.chaos.2005.11.045
[18]Wang, X., Chen, G.: Pinning control of scale-free dynamical networks. Physica A 310, 521–531 (2002) · Zbl 0995.90008 · doi:10.1016/S0378-4371(02)00772-0
[19]Li, X., Wang, X., Chen, G.: Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circ. Syst. I–Regul. Pap. 51, 2074–2087 (2004) · doi:10.1109/TCSI.2004.835655
[20]Chen, T., Liu, X., Lu, W.: Pinning complex networks by a single controller. IEEE Trans. Circ. Syst. I—-Regul. Pap. 54, 1317–1326 (2007) · doi:10.1109/TCSI.2007.895383
[21]Sorrentino, F., di Bernardo, M., Garofalo, F., Chen, G.: Controllability of complex networks via pinning. Phys. Rev. E 75, 046103 (2007) · doi:10.1103/PhysRevE.75.046103