zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Q-S synchronization between chaotic systems with double scaling functions. (English) Zbl 1209.93080
Summary: A double function Q-S synchronization (DFQSS) scheme of non-identical chaotic systems is proposed and analyzed with the assumption that all of the parameters are unknown. The sufficient conditions for achieving the double function Q-S synchronization with the desired scaling functions of two different chaotic systems (including the systems of non-identical dimension) are derived based on Lyapunov stability theory. By the adaptive control technique, the control laws and the corresponding parameter update laws are presented such that the DFQSS of non-identical chaotic systems is to be achieved. Numerical simulations and a brief discussion conclude the paper.
MSC:
93C40Adaptive control systems
34C28Complex behavior, chaotic systems (ODE)
34D06Synchronization
37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
References:
[1]Perora, L.M., Carroll, T.L.: Synchronization in chaotic system. Phys. Rev. Lett. 64, 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[2]Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82, 3042 (1999) · doi:10.1103/PhysRevLett.82.3042
[3]Yan, Z.Y.: Chaos Q–S synchronization between Rösler system and a new unified chaotic system. Phys. Lett. A 334, 406–446 (2005) · Zbl 1123.37312 · doi:10.1016/j.physleta.2004.11.042
[4]Yan, Z.Y.: Q–S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems–a symbolic numeric computation approach. Chaos 15, 023902 (2005)
[5]Wang, Q., Chen, Y.: Generalized Q–S (lag, anticipated and complete) synchronization in modified Chua’s circuit and Hindmarsh–Rose systems. Appl. Math. Comput. 181, 8–56 (2006)
[6]Yan, Z.Y.: Q–S (complete or anticipated) synchronization backstepping scheme in a class of discrete-time chaotic (hyperchaotic) systems: asymbolic–numeric computation approach. Chaos 16, 013119 (2006) · Zbl 1144.37420 · doi:10.1063/1.1930727
[7]Yang, X.S.: Concepts of synchronization in dynamical systems. Phys. Lett. A 260, 340–344 (1999) · Zbl 0939.34041 · doi:10.1016/S0375-9601(99)00532-0
[8]Wang, C., Ge, S.S.: Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos Solitons Fractals 6, 1199–1206 (2001) · Zbl 1015.37052 · doi:10.1016/S0960-0779(00)00089-8
[9]Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976) · doi:10.1016/0375-9601(76)90101-8
[10]Lü, J., Chen, G., Cheng, D., Celikovsky, S.: Bridge the gap between the Lorenz system and Chen system. Int. J. Bifurc. Chaos 6, 2917–2926 (2002)
[11]Hu, M.F., Xu, Z.: A general scheme for Q–S synchronization of chaotic systems. Nonlinear Anal. 69, 1091–1099 (2008) · Zbl 1153.34338 · doi:10.1016/j.na.2007.06.038
[12]Ho, M.C., Hung, Y.C., et al.: Reduced-order synchronization of chaotic systems with parameters unknown. Phys. Lett. A 348, 251–259 (2006) · doi:10.1016/j.physleta.2005.08.076
[13]Zhao, J.K., Zhang, K.C.: Adaptive function Q–S synchronization of chaotic systems with unknown parameters. Int. J. Adapt. Control Signal Process. (2009). doi: 10.1002/acs.1159
[14]Fang, B.R., Zhou, J.D., Li, Y.M.: Matrix Theory, pp. 256–262. Tsinghua Univ. Press, Beijing (2004)
[15]Li, Y.X., Tang, W.K.S., Chen, G.: Generating hyperchaos via state feedback control. Int. J. Bifurc. Chaos 10, 3367–3375 (2005)
[16]Chen, A., Lu, J., Lü, J., Yu, S.: Generating hyperchaotic Lü attractor via state feedback control. Physica A 364, 103–110 (2006) · doi:10.1016/j.physa.2005.09.039
[17]Lorenz, E.N.: Deterministic non-periodic flows. J. Atmos. Sci. 20, 130–141 (1963) · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2