zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Yang and yin parameters in the Lorenz system. (English) Zbl 1210.34065
From the summary: The chaos in the historical Lorenz system with “Yin parameters” is introduced and various kinds of phenomena in the historical Lorenz system are investigated by Lyapunov exponents, phase portraits, and bifurcation diagrams.
MSC:
34C60Qualitative investigation and simulation of models (ODE)
34C28Complex behavior, chaotic systems (ODE)
34D08Characteristic and Lyapunov exponents
References:
[1]Lacitignola, D., Petrosillo, I., Zurlini, G.: Time-dependent regimes of a tourism-based social–ecological system: period-doubling route to chaos. Ecol. Complex. 7, 44–54 (2010) · doi:10.1016/j.ecocom.2009.03.009
[2]Elnashaie, S.S.E.H., Grace, J.R.: Complexity, bifurcation and chaos in natural and man-made lumped and distributed systems. Chem. Eng. Sci. 62, 3295–3325 (2007) · doi:10.1016/j.ces.2007.02.047
[3]Jovic, B., Unsworth, C.P., Sandhu, G.S., Berber, S.M.: A robust sequence synchronization unit for multi-user DS-CDMA chaos-based communication systems. Signal Process. 87, 1692–1708 (2007) · Zbl 1186.94166 · doi:10.1016/j.sigpro.2007.01.014
[4]Ge, Z.M., Chen, C.C.: Phase synchronization of coupled chaotic multiple time scales systems. Chaos Solitons Fractals 20, 639–647 (2004) · Zbl 1069.34056 · doi:10.1016/j.chaos.2003.08.001
[5]Ge, Z.M., Cheng, J.W.: Chaos synchronization and parameter identification of three time scales brushless DC motor system. Chaos Solitons Fractals 24, 597–616 (2005) · Zbl 1061.93524 · doi:10.1016/j.chaos.2004.09.031
[6]Wang, Y., Wong, K.W., Liao, X., Chen, G.: A new chaos-based fast image encryption algorithm. Appl. Soft Comput. (in press)
[7]Fallahi, K., Leung, H.: A chaos secure communication scheme based on multiplication modulation. Commun. Nonlinear Sci. Numer. Simul. 15, 368–383 (2010) · Zbl 1221.94045 · doi:10.1016/j.cnsns.2009.03.022
[8]Yu, W.: A new chaotic system with fractional order and its projective synchronization. Nonlinear Dyn. 48, 165–174 (2007) · Zbl 1176.92008 · doi:10.1007/s11071-006-9080-6
[9]Chen, H.K., Sheu, L.J.: The transient ladder synchronization of chaotic systems. Phys. Lett. A 355, 207–211 (2006) · doi:10.1016/j.physleta.2005.10.111
[10]Lorenz, E.N.: Deterministic non-periodic flows. J. Atoms. 20, 130–141 (1963) · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[11]Cox, S.M.: The transition to chaos in an asymmetric perturbation of the Lorenz system. Phys. Lett. A 144, 325–328 (1990) · doi:10.1016/0375-9601(90)90134-A
[12]Chen, C.-C., Tsai, C.-H., Fu, C.-C.: Rich dynamics in self-interacting Lorenz systems. Phys. Lett. A 194, 265–271 (1994) · Zbl 0959.37509 · doi:10.1016/0375-9601(94)91248-3
[13]Liu, Y., Barbosa, L.C.: Periodic locking in coupled Lorenz systems. Phys. Lett. A 197, 13–18 (1995) · Zbl 1020.37509 · doi:10.1016/0375-9601(94)00887-U
[14]Wang, L.: 3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system. Nonlinear Dyn. 56, 453–462 (2009) · Zbl 1204.70021 · doi:10.1007/s11071-008-9417-4
[15]Cang, S., Qi, G., Chen, Z.: A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system. Nonlinear Dyn. 59, 515–527 (2010) · Zbl 1183.70049 · doi:10.1007/s11071-009-9558-0