zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solitary wave solutions and kink wave solutions for a generalized KdV-mKdV equation. (English) Zbl 1210.35214
Summary: Bifurcation method of dynamical systems is employed to investigate solitary wave solutions and kink wave solutions of the generalized KDV-mKDV equation. Under some parameter conditions, their explicit expressions are obtained.
35Q53KdV-like (Korteweg-de Vries) equations
35B32Bifurcation (PDE)
35C08Soliton solutions of PDE
35C05Solutions of PDE in closed form
37K50Bifurcation problems (infinite-dimensional systems)
[1]Li, Z. L.: Constructing of new exact solutions to the gKdV – mkdv equation with any-order nonlinear terms by (G ' /G)-expansion method, Appl. math. Comput. 217, 1398-1403 (2010) · Zbl 1203.35231 · doi:10.1016/j.amc.2009.05.034
[2]Li, X. Z.; Wang, M. L.: A sub-ODE method for finding exact solutions of a generalized KdV – mkdv equation with high-order nonlinear terms, Phys. lett. A 361, 115-118 (2007) · Zbl 1170.35085 · doi:10.1016/j.physleta.2006.09.022
[3]Antonova, M.; Biswas, A.: Adiabatic parameter dynamics of perturbed solitary waves, Commun. nonlinear sci. Numer. simul. 14, 734-748 (2009) · Zbl 1221.35321 · doi:10.1016/j.cnsns.2007.12.004
[4]Smyth, N. F.; Worthy, A. L.: Solitary wave evolution for mkdv equations, Wave motion 21, 263-275 (1995) · Zbl 0968.35517 · doi:10.1016/0165-2125(94)00053-8
[5]Khater, A. H.: Two new classes of exact solutions for the KdV equation via Bäcklund transformations, Chaos soliton fract. 8, No. 12, 1901-1909 (1997) · Zbl 0938.35169 · doi:10.1016/S0960-0779(97)00090-8
[6]Kovalyov, M.; Abadi, M. H. A.: An explicit formula for a class of solutions of the KdV equation, Phys. lett. A 254, 47-52 (1999) · Zbl 0938.35162 · doi:10.1016/S0375-9601(99)00088-2
[7]Gardner, L. R. T.: Solitary wave solutions of the mkdv-equation, Comput. method appl. M. 124, 21-333 (1995)
[8]Kevrekidis1, P. G.: On some classes of mkdv periodic solutions, J. phys. A: math. Gen. 37, 10959-10965 (2004)
[9]Wu, H. X.: On the extended KdV equation with self-consistent sources, Phys. lett. A 370, 477-484 (2007) · Zbl 1209.35121 · doi:10.1016/j.physleta.2007.06.045
[10]Biswas, A.; Zerrad, E.: Soliton perturbation theory for the gardner equation, Adv. stud. Theor. phys. 2, No. 16, 787-794 (2008) · Zbl 1157.35466 · doi:http://www.m-hikari.com/astp/astp2008/astp13-16-2008/biswasASTP13-16-2008.pdf
[11]Zhang, J. F.: Simple soliton solution method for the combined KdV and mkdv equation, Int. J. Theor. phys. 39, 1697-1702 (2000) · Zbl 0958.35124 · doi:10.1023/A:1003648715053
[12]Miura, R. M.: The Korteweg-de Vries equation: a survey of results, SIAM rev. 8, 412-459 (1976) · Zbl 0333.35021 · doi:10.1137/1018076
[13]Liu, Z. R.; Yang, C. X.: The application of bifurcation method to a higher-order KdV equation, J. math. Anal. appl. 275, No. 1, 1-12 (2002) · Zbl 1012.35076 · doi:10.1016/S0022-247X(02)00210-X
[14]Li, J. B.; Liu, Z. R.: Smooth and non-smooth traveling waves in a nonlinearly dispersive equation, Appl. math. Model. 25, No. 1, 41-56 (2000) · Zbl 0985.37072 · doi:10.1016/S0307-904X(00)00031-7
[15]Li, J. B.; Zhang, L. J.: Bifurcations of traveling wave solutions in generalized Pochhammer – chree equation, Chaos soliton fract. 14, 581-593 (2002) · Zbl 0997.35096 · doi:10.1016/S0960-0779(01)00248-X
[16]Tang, M. Y.; Zhang, W. L.: Four types of bounded wave solutions of CH-γ equation, Sci. chin. Ser. A: math. 50, No. 1, 132-152 (2007) · Zbl 1117.35310 · doi:10.1007/s11425-007-2042-8
[17]Song, M.: Exact solitary wave solutions of the kadomtsov – Petviashvili – benjamin – bona – Mahony equation, Appl. math. Comput. 217, 1334-1339 (2010) · Zbl 1203.35245 · doi:10.1016/j.amc.2009.05.007
[18]Song, M.; Cai, J. H.: Solitary wave solutions and kink wave solutions for a generalized Zakharov – Kuznetsov equation, Appl. math. Comput. 217, 1455-1462 (2010) · Zbl 1203.35244 · doi:10.1016/j.amc.2009.05.067
[19]Chow, S. N.; Hale, J. K.: Method of bifurcation theory, (1982)
[20]Guckenheimer, J.; Homes, P.: Nonlinear oscillations, Dynamical systems and bifurcations of vector fields (1999)