zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Trigonometrically fitted two-step hybrid methods for special second order ordinary differential equations. (English) Zbl 1210.65133
Summary: The purpose of this paper is to derive two-step hybrid methods for second order ordinary differential equations with oscillatory or periodic solutions. We show the constructive technique of methods based on trigonometric and mixed polynomial fitting and consider the linear stability analysis of such methods. We then carry out some numerical experiments underlining the properties of the derived classes of methods.
65L06Multistep, Runge-Kutta, and extrapolation methods
65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
65L20Stability and convergence of numerical methods for ODE
34C10Qualitative theory of oscillations of ODE: zeros, disconjugacy and comparison theory
34C25Periodic solutions of ODE
[1]Albrecht, P.: A new theoretical approach to Runge – Kutta methods, SIAM J. Numer. anal. 24, No. 2, 391-406 (1987) · Zbl 0617.65067 · doi:10.1137/0724030
[2]Coleman, J. P.: Order conditions for a class of two-step methods for y″=f(x,y), IMA J. Numer. anal. 23, 197-220 (2003) · Zbl 1022.65080 · doi:10.1093/imanum/23.2.197
[3]Coleman, J. P.; Suzanne, C.; Duxbury: Mixed collocation methods for y”=f(x,y), J. comput. Appl. math. 126, No. 1 – 2, 47-75 (2000) · Zbl 0971.65073 · doi:10.1016/S0377-0427(99)00340-4
[4]Coleman, J. P.; Ixaru, L. Gr.: P-stability and exponential-Fitting methods for y”=f(x,y), IMA J. Numer. anal. 16, 179-1999 (1996) · Zbl 0847.65052 · doi:10.1093/imanum/16.2.179
[5]Coleman, J. P.; Ixaru, L. Gr.: Truncation errors in exponential Fitting for oscillatory problems, SIAM J. Numer. anal. 44, 1441-1465 (2006) · Zbl 1123.65016 · doi:10.1137/050641752
[6]D’ambrosio, R.; Ferro, M.; Paternoster, B.: A general family of two step collocation methods for ordinary differential equations, Numerical analysis and applied mathematics – AIP conf. Proc., vol. 936 936, 45-48 (2007) · Zbl 1152.65320 · doi:10.1063/1.2790178
[7]D’ambrosio, R.; Ferro, M.; Jackiewicz, Z.; Paternoster, B.: Almost two-step collocation methods for ordinary differential equations, Numer. algorithms 53, No. 2 – 3, 195-217 (2010) · Zbl 1186.65107 · doi:10.1007/s11075-009-9280-5
[8]D’ambrosio, R.; Ferro, M.; B.; Paternoster: Collocation based two step Runge – Kutta methods for ordinary differential equations, ICCSA 2008. Lecture notes in comput. Sci., part II, vol. 5073 5073, 736-751 (2008)
[9]D’ambrosio, R.; Ferro, M.; Paternoster, B.: Two-step hybrid collocation methods for y″=f(x,y), Appl. math. Lett. 22, 1076-1080 (2009)
[10]De Meyer, H.; Vanthournout, J.; Berghe, G. Vanden: On a new type of mixed interpolation, J. comput. Appl. math. 30, 55-69 (1990) · Zbl 0693.41003 · doi:10.1016/0377-0427(90)90005-K
[11]Fang, Y.; Song, Y.; Wu, X.: Trigonometrically fitted explicit numerov-type method for periodic ivps with two frequencies, Comput. phys. Commun. 179, 801-811 (2008) · Zbl 1197.65085 · doi:10.1016/j.cpc.2008.07.013
[12]Franco, J. M.: Exponentially fitted explicit Runge – Kutta – Nyström methods, J. comput. Appl. math. 167, 1-19 (2004) · Zbl 1060.65073 · doi:10.1016/j.cam.2003.09.042
[13]Hairer, E.; Norsett, S. P.; Wanner, G.: Solving ordinary differential equations I – nonstiff problems, Springer series in computational mathematics 8 (2000)
[14]Hairer, E.; Wanner, G.: Solving ordinary differential equations II – stiff and differential – algebraic problems, (2002)
[15]Ixaru, L. Gr.; Berghe, G. Vanden: Exponential Fitting, (2004)
[16]Z. Jackiewicz, General Linear Methods for Ordinary Differential Equations, John Wiley amp; Sons, Hoboken, New Jersey, 2009. · Zbl 1211.65095 · doi:10.1002/978-0-470-52216-5
[17]Kramarz, L.: Stability of collocation methods for the numerical solution of y ' '=f(t,y), Bit 20, 215-222 (1980) · Zbl 0425.65043 · doi:10.1007/BF01933194
[18]Lambert, J. D.: Numerical methods for ordinary differential systems: the initial value problem, (1991) · Zbl 0745.65049
[19]Paternoster, B.: Runge – Kutta(--Nyström) methods for odes with periodic solutions based on trigonometric polynomials, Appl. numer. Math. 28, 401-412 (1998) · Zbl 0927.65097 · doi:10.1016/S0168-9274(98)00056-7
[20]Paternoster, B.: A phase-fitted collocation-base Runge – Kutta – Nyström method, Appl. num. Math. 35, No. 4, 239-355 (2000) · Zbl 0979.65063 · doi:10.1016/S0168-9274(99)00143-9
[21]Paternoster, B.: Two step Runge – Kutta – Nyström methods for oscillatory problems based on mixed polynomials, Computational science – ICCS 2003. Lecture notes in computer science, vol. 2658, part II 2658, 131-138 (2003) · Zbl 1147.65317 · doi:10.1007/3-540-44862-4_15
[22]Petzold, L. R.; Jay, L. O.; Yen, J.: Numerical solution of highly oscillatory ordinary differential equations, Acta numer., 437-483 (1997) · Zbl 0887.65072
[23]Berghe, G. Vanden; De Meyer, H.; Van Daele, M.; Van Hecke, T.: Exponentially fitted Runge – Kutta methods, Comput. phys. Comm. 123, 7-15 (1999) · Zbl 0948.65066 · doi:10.1016/S0010-4655(99)00365-3
[24]Berghe, G. Vanden; Van Daele, M.: Exponentially-fitted numerov methods, J. comput. Appl. math. 200, 140-153 (2007) · Zbl 1110.65071 · doi:10.1016/j.cam.2005.12.022
[25]Van Der Houwen, P. J.; Sommeijer, B. P.: Diagonally implicit Runge – Kutta – Nyström methods for oscillatory problems, SIAM J. Num. anal. 26, 414-429 (1989) · Zbl 0676.65072 · doi:10.1137/0726023
[26]Van Der Houwen, P. J.; Sommeijer, B. P.: Nguyen huu cong, stability of collocation-based Runge – Kutta – Nyström methods, Bit 31, 469-481 (1991) · Zbl 0731.65071 · doi:10.1007/BF01933263
[27]Van De Vyver, H.: Phase-fitted and amplification-fitted two-step hybrid methods for y″=f(x,y), J. comput. Appl. math. 209, 33-53 (2007)