zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fractional control of heat diffusion systems. (English) Zbl 1210.80008
The paper deals with study of heat diffusion system using the fractional calculus concepts. The fractional order operator is and some implications of the fractional calculus on the control algorithms and systems with time delay are investigated. Four kinds of control strategies are presented and compared from the point of view of accuracy as well as the implementation efficiency.
MSC:
80A20Heat and mass transfer, heat flow
34A08Fractional differential equations
26A33Fractional derivatives and integrals (real functions)
References:
[1]Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)
[2]Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
[3]Battaglia, J.L., Cois, O., Puigsegur, L., Oustaloup, A.: Solving an inverse heat conduction problem using a non-integer identified model. Int. J. Heat Mass Transf. 44, 2671–2680 (2001) · Zbl 0981.80007 · doi:10.1016/S0017-9310(00)00310-0
[4]Courant, R., Hilbert, D.: Methods of Mathematical Physics, Partial Differential Equations. Wiley–Interscience II, New York (1962)
[5]Podlubny, I.: Fractional-order systems and PI λ D μ -controllers. IEEE Trans. Automat. Contr. 44(1), 208–213 (1999) · Zbl 1056.93542 · doi:10.1109/9.739144
[6]Vinagre, B.M., Chen, Y.Q., Petráš, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. Franklin Inst. 340(5), 349–362 (2003) · Zbl 1051.93031 · doi:10.1016/j.jfranklin.2003.08.001
[7]Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion to discretize fractional order derivatives-an expository review. Nonlinear Dyn. 38(1–4), 155–170 (2004) · Zbl 1134.93300 · doi:10.1007/s11071-004-3752-x
[8]Barbosa, R.S., Tenreiro Machado, J.A., Silva, M.F.: Time domain design of fractional differintegrators using least-squares. Signal Process. 86(10), 2567–2581 (2006) · Zbl 1172.94364 · doi:10.1016/j.sigpro.2006.02.005
[9]Zhuang, M., Atherton, D.P.: Automatic tuning of optimum PID controllers. IEE Proc., Control Theory Appl. 140(3), 216–224 (1993) · Zbl 0775.93024 · doi:10.1049/ip-d.1993.0030
[10]Petrás, I., Vinagre, B.M.: Practical application of digital fractional-order controller to temperature control. Acta Montan. Slovaca 7(2), 131–137 (2002)
[11]Barbosa, R.S., Tenreiro Machado, J.A., Ferreira, I.M.: Tuning of PID controllers based on Bode’s ideal transfer function. Nonlinear Dyn. 38(1/4), 305–321 (2004) · Zbl 1134.93334 · doi:10.1007/s11071-004-3763-7
[12]Chen, Y.Q., Moore, K.L.: Relay feedback tuning of robust PID controllers with iso-damping property. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 35(1), 23–31 (2005) · doi:10.1109/TSMCB.2004.837950
[13]Tenreiro Machado, J., Jesus, I., Boaventura Cunha, J., Tar, J.K.: Fractional Dynamics and Control of Distributed Parameter Systems. In: Intelligent Systems at the Service of Mankind, Vol. 2, pp. 295–305. Ubooks (2006)
[14]Crank, J.: The Mathematics of Diffusion. Oxford University Press, London (1956)
[15]Gerald, C.F., Wheatley, P.O.: Applied Numerical Analysis. Addison Wesley, Reading (1999)
[16]Farlow, S.J.: Partial Differential Equations for Scientists and Engineers. Wiley, New York (1993)
[17]Chen, Y.Q.: Ubiquitous fractional order controls? In: The Second IFAC Symposium on Fractional Derivatives and Applications–IFAC–FDA06, July, Portugal (2006)
[18]Jesus, I.S., Barbosa, R.S., Tenreiro Machado, J.A., Boaventura Cunha, J.: Strategies for the control of heat diffusion systems based on fractional calculus. In: IEEE-ICCC 2006–IEEE International Conference on Computational Cybernetics, August 3–8, Estonia (2006)
[19]Smith, O.J.M.: Closed control of loops with dead time. Chem. Eng. Process. 53, 217–219 (1957)