zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The derivation Lie algebra of the higher rank Virasoro-like algebra and its automorphism groups. (English) Zbl 1211.17019

Authors’ summary: “We study the derivation Lie algebra of the higher rank Virasoro-like algebra. We prove that it is isomorphic to the skew derivation Lie algebra. We also characterize the automorphism groups of the higher rank Virasoro-like algebra and the skew derivation Lie algebra. This generalizes the result of some related references.”

The main results are, however, special cases resp. easy consequences of two papers of K. Zhao and D. Ž. Đoković [J. Algebra 193, No. 1, 144–179 (1997; Zbl 0978.17015) and J. Pure Appl. Algebra 127, No. 2, 153–165 (1998; Zbl 0929.17025)].

MSC:
17B65Infinite-dimensional Lie (super)algebras
17B40Automorphisms, derivations and other operators on Lie algebras
References:
[1]Cao, Y.; Tan, Z.: Automorphisms of the Lie algebra of strictly upper triangular matrices over a commutative ring, Linear algebra appl. 360, No. 1, 105-122 (2003) · Zbl 1015.17017 · doi:10.1016/S0024-3795(02)00446-9
[2]Eick, B.: Computing the automorphism group of a solvable Lie algebra, Linear algebra appl. 382, No. 1, 195-209 (2004) · Zbl 1045.17001 · doi:10.1016/j.laa.2003.12.009
[3]Farnsteiner, R.: Derivations and central extensions of finitely generated graded Lie algebras, J. algebra 118, 33-45 (1988) · Zbl 0658.17013 · doi:10.1016/0021-8693(88)90046-4
[4]Jiang, C.; Meng, D.: The automorphism group of the derivation algebra of the Virasoro-like algebra, Adv. math. (China) 27, No. 2, 175-183 (1998) · Zbl 1054.17505
[5]Kirkman, E.; Procesi, C.; Small, L.: A q-analog for the Virasoro algebra, Comm. algebra 22, 3755-3774 (1994) · Zbl 0813.17009 · doi:10.1080/00927879408825052
[6]Lin, W.; Tan, S.: Nonzero level harish – chandra modules over the Virasoro-like algebra, J. pure appl. Algebra 204, 90-105 (2006) · Zbl 1105.17014 · doi:10.1016/j.jpaa.2005.03.002
[7]Mathieu, O.: Classification of harish – chandra modules over the Virasoro algebra, Invent. math. 107, 225-234 (1992) · Zbl 0779.17025 · doi:10.1007/BF01231888
[8]Su, Y.; Zhu, L.: Derivation algebras of centerless perfect Lie algebras are complete, J. algebra 285, 508-515 (2005) · Zbl 1154.17303 · doi:10.1016/j.jalgebra.2004.09.033
[9]Wang, X.; Zhao, K.: Verma modules over the Virasoro-like algebra, J. austral. Math. 80, 179-191 (2006) · Zbl 1109.17013 · doi:10.1017/S1446788700013069
[10]Xue, M.; Lin, W.; Tan, S.; Extension, Central: Derivations and automorphism group for Lie algebras arising from the 2-dimensional torus, J. Lie theory 16, No. 1, 139-153 (2006) · Zbl 1105.17006 · doi:http://www.heldermann.de/JLT/JLT16/JLT161/jlt16012.htm
[11]Ye, C.; Tan, S.: Graded automorphism group of TKK algebra, Sci. China ser. A 51, No. 2, 161-168 (2008) · Zbl 1192.17014 · doi:10.1007/s11425-007-0199-9