zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Essential norm of composition operators between weighted Hardy spaces. (English) Zbl 1211.30062
Summary: An asymptotic formula for the essential norm of composition operators acting between two weighted Hardy spaces H w 1 and H w 2 , where w 1 and w 2 are two admissible weight functions, is given. The boundedness of the operators is also characterized.
MSC:
30H10Hardy spaces
References:
[1]Bierstedt, K. D.; Summers, W. H.: Biduals of weighted Banach spaces of analytic functions, J. austral. Math. soc. (Series A) 54, 70-79 (1993) · Zbl 0801.46021
[2]Cowen, C. C.; Maccluer, B. D.: Composition operators on spaces of analytic functions, (1995) · Zbl 0873.47017
[3]Galindo, P.; Lindström, M.: Essential norm of operators on weighted Bergman spaces of infinite order, J. oper. Theor. 64, No. 2, 387-399 (2010) · Zbl 1211.47064
[4]Lindström, M.; Wolf, E.: Essential norm of the difference of weighted composition operators, Monatsh. math. 153, 133-143 (2008) · Zbl 1146.47015 · doi:10.1007/s00605-007-0493-1
[5]Lusky, W.: On weighted spaces of harmonic and holomorphic functions, J. London math. Soc. 51, 309-320 (1995) · Zbl 0823.46025
[6]Maccluer, B. D.; Zhao, R.: Essential norms of weighted composition operators between Bloch-type spaces, Rocky mountain J. Math. 33, 1437-1458 (2003) · Zbl 1061.30023 · doi:10.1216/rmjm/1181075473
[7]Montes-Rodriguez, A.: The essential norm of composition operators on Bloch spaces, Pacific J. Math. 188, 339-351 (1999) · Zbl 0932.30034 · doi:10.2140/pjm.1999.188.339 · doi:http://nyjm.albany.edu:8000/PacJ/1999/188-2-8.html
[8]Ramos-Fernandez, J. C.: Composition operators on Bloch – Orlicz type spaces, Appl. math. Comput. 217, No. 7, 3392-3402 (2010) · Zbl 1204.30047 · doi:10.1016/j.amc.2010.09.004
[9]M.H. Shaabani, B.K. Robati, On the norm of certain weighted composition operators on the Hardy space, Abstr. Appl. Anal., vol. 2009, Article ID 720217, 2009, 13 pages. · Zbl 1176.47023 · doi:10.1155/2009/720217
[10]Shapiro, J. H.: The essential norm of a composition operator, Ann. math. 125, 375-404 (1987) · Zbl 0642.47027 · doi:10.2307/1971314
[11]Sharma, A. K.: Compact composition operators on generalized Hardy spaces, Georgian J. Math. 15, 775-783 (2008) · Zbl 1166.47028 · doi:http://www.heldermann.de/GMJ/GMJ15/GMJ154/gmj15061.htm
[12]Sharma, A. K.; Sharma, S. D.: Composition operators between Bergman – Orlicz spaces, Bull. austral. Math. soc. 75, 273-287 (2007) · Zbl 1119.47024 · doi:10.1017/S0004972700039204
[13]Sharma, A. K.; Sharma, S. D.: Compact composition operators on Hardy – Orlicz spaces, Math. vesnik 60, 215-224 (2008) · Zbl 1199.46073
[14]Shields, A. L.; Williams, D. L.: Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. amer. Math. soc. 162, 287-302 (1971) · Zbl 0227.46034
[15]K. Kellay, P. Lefèvre, Compact composition operators on weighted Hilbert spaces of analytic functions, preprint (2010).
[16]S. Stević, Essential norms of weighted composition operators from the nbsp;-Bloch space to a weighted-type space on the unit ball, Abstr. Appl. Anal., vol. 2008, Article ID 279691, 2008, 11 pages. · Zbl 1160.32011 · doi:10.1155/2008/279691
[17]Stević, S.: Norm of weighted composition operators from Bloch space to Hμ on the unit ball, Ars combin. 88, 125-127 (2008) · Zbl 1224.30195
[18]Stević, S.: Norms of some operators from Bergman spaces to weighted and Bloch-type space, Util. math. 76, 59-64 (2008) · Zbl 1160.47027
[19]Stević, S.: Essential norm of an operator from the weighted Hilbert-Bergman space to the Bloch-type space, Ars combin. 91, 123-127 (2009) · Zbl 1216.47059
[20]Stević, S.: Essential norms of weighted composition operators from the Bergman space to weighted-type spaces on the unit ball, Ars combin. 91, 391-400 (2009) · Zbl 1216.47041
[21]Stević, S.: Norm and essential norm of composition followed by differentiation from α-Bloch spaces to Hμ, Appl. math. Comput. 207, 225-229 (2009) · Zbl 1157.47026 · doi:10.1016/j.amc.2008.10.032
[22]Stević, S.: Norm of weighted composition operators from α-Bloch spaces to weighted-type spaces, Appl. math. Comput. 215, 818-820 (2009) · Zbl 1181.32011 · doi:10.1016/j.amc.2009.06.005
[23]Stević, S.: On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball, J. math. Anal. appl. 354, 426-434 (2009) · Zbl 1171.47028 · doi:10.1016/j.jmaa.2008.12.059
[24]Stević, S.: Products of composition and differentiation operators on the weighted Bergman space, Bull. belg. Math. soc. Simon stevin 16, 623-635 (2009) · Zbl 1181.30031 · doi:euclid:bbms/1257776238
[25]Stević, S.: Weighted composition operators between Fock-type spaces in CN, Appl. math. Comput. 215, 2750-2760 (2009) · Zbl 1186.32003 · doi:10.1016/j.amc.2009.09.016
[26]Stević, S.: Essential norm of differences of weighted composition operators between weighted-type spaces on the unit ball, Appl. math. Comput. 217, 1811-1824 (2010) · Zbl 1221.47062 · doi:10.1016/j.amc.2010.02.034
[27]S. Stević, Norm and essential norm of an integral-type operator from the Dirichlet space to the Bloch-type space on the unit ball, Abstr. Appl. Anal., vol. 2010, Article ID 134969, 2010, 9 pages.
[28]Stević, S.: Norms of multiplication operators on Hardy spaces and weighted composition operators from Hardy spaces to weighted-type spaces on bounded symmetric domains, Appl. math. Comput. 217, 2870-2876 (2010) · Zbl 1207.32014 · doi:10.1016/j.amc.2010.08.022
[29]Ueki, S. I.: Hilbert-Schmidt weighted composition operators on the Fock space, Int. J. Math. analysis 1, No. 16, 744-769 (2007)
[30]Ueki, S. I.: Weighted composition operators on the Bargmann – Fock space, Int. J. Mod. math. 3, No. 3, 231-243 (2008) · Zbl 1171.47021
[31]Ueki, S. I.: Weighted composition operators on some function spaces of entire functions, Bull. belg. Math. soc. Simon stevin 17, No. 2, 343-353 (2010) · Zbl 1191.47032 · doi:euclid:bbms/1274896210
[32]Ueki, S. I.; Stević, S.: Weighted composition operators from the weighted Bergman space to the weighted Hardy space on the unit ball, Appl. math. Comput. 215, 3526-3533 (2010) · Zbl 1197.47040 · doi:10.1016/j.amc.2009.10.048
[33]Yang, W.; Meng, X.: Generalized composition operators from F(p,q,s) spaces to Bloch-type spaces, Appl. math. Comput. 217, No. 6, 2513-2519 (2010) · Zbl 1221.47048 · doi:10.1016/j.amc.2010.07.063
[34]X. Zhu, Weighted composition operators from F(p,q,s) spaces to Hnbsp;nbsp; spaces, Abstr. Appl. Anal., vol. 2009, Article ID 290978, 2009, 14 pages.
[35]Zhu, X.: Weighted composition operators from area Nevanlinna spaces into Bloch spaces, Appl. math. Comput. 215, No. 12, 4340-4346 (2010) · Zbl 1185.30058 · doi:10.1016/j.amc.2009.12.064